Forgot password?
 Register account
View 3038|Reply 10

[函数] 一道双变量范围问题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2014-5-12 22:26 |Read mode
已知$x,y\geqslant\dfrac12,x^2+y^2=x+y$,求$\dfrac{x^2}{y}+\dfrac{y^2}{x}$的取值范围.
有简单算法吗?

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-12 23:16
回复 1# aishuxue
这么说,你有“复杂”的算法?晒出来!

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2014-5-13 09:55
没有解法啊!

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2014-5-13 11:56
Last edited by hbghlyj 2025-4-8 05:14回复 1# aishuxue \begin{aligned}
& \text { 解: }\left\{\begin{array}{l}
x=\frac{1}{2}+\frac{\sqrt{2}}{2} \cos \theta \\
y=\frac{1}{2}+\frac{\sqrt{2}}{2} \sin \theta
\end{array}, \theta \in\left[0, \frac{\pi}{2}\right], \text { 设 } t=\sin \theta+\cos \theta, t \in[1, \sqrt{2}]\right. \text {. } \\
& \frac{x^2}{y}+\frac{y^2}{x}=\sqrt{2} \cdot\left(\frac{2}{t}-\frac{t}{2}\right)+1 \in\left[2, \frac{3}{2} \sqrt{2}+1\right]
\end{aligned}

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-16 18:29
,尼玛这题成为博客热题呀?
1、盐城市2014届高三年级第三次模拟考试第14题:blog.sina.com.cn/s/blog_517a65350101dkqt.html

2、2014盐城3模12,13,14解析:blog.sina.com.cn/s/blog_d7f6c5a90101rcub.html

3、张云华:一个征解问题再解:blog.sina.com.cn/s/blog_630088e00101s2au.html

4、关于李文明老师一道试题的一个解法:blog.sina.com.cn/s/blog_a09ecf700101ko37.html

5、也求一个二元分式函数的范围:blog.sina.com.cn/s/blog_48c5d7a90101iq85.html

6、一道取值范围试题的再解:blog.sina.com.cn/s/blog_4b94e7d80101rgft.html

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-5-16 19:02
回复 5# 其妙

尼玛,每次顶起来进来看还是一样的楼层,你是每加一个链接就删一次再回一次吗?

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-16 21:09
回复 6# kuing
,说的极是,

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-5-16 21:15

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2014-5-16 21:33
回复 8# kuing
解来解去,没有什么新意!kuing搞个新方法!

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-5-16 22:08
回复 9# 转化与化归

期待一下

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-17 20:40
回复 10# isee
期待

Mobile version|Discuz Math Forum

2025-6-6 20:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit