Forgot password?
 Create new account
View 2907|Reply 10

[函数] 一道双变量范围问题

[Copy link]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted at 2014-5-12 22:26:15 |Read mode
已知$x,y\geqslant\dfrac12,x^2+y^2=x+y$,求$\dfrac{x^2}{y}+\dfrac{y^2}{x}$的取值范围.
有简单算法吗?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-12 23:16:59
回复 1# aishuxue
这么说,你有“复杂”的算法?晒出来!

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2014-5-13 09:55:33
没有解法啊!

29

Threads

73

Posts

662

Credits

Credits
662

Show all posts

转化与化归 Posted at 2014-5-13 11:56:56
Last edited by hbghlyj at 2025-4-8 05:14:53回复 1# aishuxue \begin{aligned}
& \text { 解: }\left\{\begin{array}{l}
x=\frac{1}{2}+\frac{\sqrt{2}}{2} \cos \theta \\
y=\frac{1}{2}+\frac{\sqrt{2}}{2} \sin \theta
\end{array}, \theta \in\left[0, \frac{\pi}{2}\right], \text { 设 } t=\sin \theta+\cos \theta, t \in[1, \sqrt{2}]\right. \text {. } \\
& \frac{x^2}{y}+\frac{y^2}{x}=\sqrt{2} \cdot\left(\frac{2}{t}-\frac{t}{2}\right)+1 \in\left[2, \frac{3}{2} \sqrt{2}+1\right]
\end{aligned}

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-16 18:29:57
,尼玛这题成为博客热题呀?
1、盐城市2014届高三年级第三次模拟考试第14题:blog.sina.com.cn/s/blog_517a65350101dkqt.html

2、2014盐城3模12,13,14解析:blog.sina.com.cn/s/blog_d7f6c5a90101rcub.html

3、张云华:一个征解问题再解:blog.sina.com.cn/s/blog_630088e00101s2au.html

4、关于李文明老师一道试题的一个解法:blog.sina.com.cn/s/blog_a09ecf700101ko37.html

5、也求一个二元分式函数的范围:blog.sina.com.cn/s/blog_48c5d7a90101iq85.html

6、一道取值范围试题的再解:blog.sina.com.cn/s/blog_4b94e7d80101rgft.html

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-16 19:02:10
回复 5# 其妙

尼玛,每次顶起来进来看还是一样的楼层,你是每加一个链接就删一次再回一次吗?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-16 21:09:01
回复 6# kuing
,说的极是,

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-16 21:15:32

29

Threads

73

Posts

662

Credits

Credits
662

Show all posts

转化与化归 Posted at 2014-5-16 21:33:29
回复 8# kuing
解来解去,没有什么新意!kuing搞个新方法!

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-16 22:08:37
回复 9# 转化与化归

期待一下

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-17 20:40:13
回复 10# isee
期待

手机版Mobile version|Leisure Math Forum

2025-4-22 18:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list