Forgot password
 Register account
View 2002|Reply 2

[函数] 求取值范围

[Copy link]

3

Threads

8

Posts

0

Reputation

Show all posts

djjtyq posted 2014-5-15 18:11 |Read mode
Last edited by djjtyq 2014-5-15 18:27$\frac{\cos x}{x}\geq \sin x-ax$在$x\in (0,+\infty )$上恒成立,求$a$的取值范围。
当$x\in (0,+\infty )$时,$\frac{\cos x}{x}\geq \sin x-ax\Leftrightarrow a\geq \frac{x\sin x-\cos x}{x^2}$,
令$h(x)=\frac{x\sin x-\cos x}{x^2}$,$x\in (0,+\infty )$,求导得,$h'(x)=\frac{x(x^2+2)\cos x}{x^4}$,
当$x\in (0,\frac{\pi}{2})\cup(2k\pi+\frac{3}{2}\pi,2k\pi+\frac{5}{2}\pi)(k=0,1,2\cdots)时$,$h'(x)>0$,$h(x)$为增函数,
当$x\in(2k\pi+\frac{1}{2}\pi,2k\pi+\frac{3}{2}\pi)(k=0,1,2\cdots)$时,$h'(x)<0$,$h(x)$为减函数,
应该如何说明$h(x)在x=\frac{\pi}{2}$处有最大值$\frac{2}{\pi}$。
QQ截图20140515180937.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-5-15 18:41
全部极大值点为 $h(2k\pi+\pi/2)$,写出表达式后说明它关于 $k$ 递减就行了吧

3

Threads

8

Posts

0

Reputation

Show all posts

original poster djjtyq posted 2014-5-15 19:14
回复 2# kuing

,$h(2k\pi+\frac{\pi}{2})=\frac{1}{\pi(2k+\frac{1}{2})}(k=0,1,2\cdots)$这么显然我怎么就没归纳出来。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 16:24 GMT+8

Powered by Discuz!

Processed in 0.012826 seconds, 26 queries