Forgot password
 Register account
View 1728|Reply 1

[数论] 三角函数的周期性与整除问题

[Copy link]

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-5-17 09:11 |Read mode
\[\cos \left[ {{{\left( {{{10}^{2014}}} \right)}^ \circ }} \right]\sin {10^ \circ } - \sin \left[ {{{\left( {{{10}^{2014}}} \right)}^ \circ }} \right]\cos {10^ \circ } = ?\]

461

Threads

958

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2014-5-17 09:12
回复 1# 青青子衿
\[\begin{gathered}
  \sin \left[ {{{\left( {{2^n}} \right)}^ \circ }} \right] = \sin \left[ {{{\left( {{2^{n + 12}}} \right)}^ \circ }} \right]\left( {n \geqslant 2,n \in {N_ + }} \right) \\
  \sin \left[ {{{\left( {{3^n}} \right)}^ \circ }} \right] = \sin \left[ {{{\left( {{3^{n + 4}}} \right)}^ \circ }} \right]\left( {n \geqslant 2,n \in {N_ + }} \right) \\
  \sin \left[ {{{\left( {{5^n}} \right)}^ \circ }} \right] = \sin \left[ {{{\left( {{5^{n + 6}}} \right)}^ \circ }} \right]\left( {n \geqslant 1,n \in {N_ + }} \right)  \\
  \sin \left[ {{{\left( {{6^n}} \right)}^ \circ }} \right] =  - \sin \left[ {{{\left( {{6^{n + 1}}} \right)}^ \circ }} \right]\left( {n \geqslant 2,n \in {N_ + }} \right)  \\
  \sin \left[ {{{\left( {{7^n}} \right)}^ \circ }} \right] = \sin \left[ {{{\left( {{7^{n + 12}}} \right)}^ \circ }} \right]\left( {n \geqslant 1,n \in {N_ + }} \right)  \\
\end{gathered}\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:23 GMT+8

Powered by Discuz!

Processed in 0.011151 seconds, 22 queries