Forgot password?
 Create new account
View 3308|Reply 18

[几何] 请教各位老师

[Copy link]

1

Threads

0

Posts

7

Credits

Credits
7

Show all posts

东方书 Posted at 2014-5-19 20:22:51 |Read mode
NOKOWNLUJ)}C$YPW57M5(1R.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-19 21:04:36
似乎会遇到高次方程……不敢玩了……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-19 21:25:15
Last edited by isee at 2014-5-20 15:20:00回复 2# kuing


个人以为


snap.png



令$\angle AOP=\alpha<\dfrac \pi3$,直接由向量定义计算:
\begin{align*}
\vv {OP}\cdot \vv {PC}&=1\times PC \cos \left(\dfrac {\pi}{2}-\dfrac {\alpha}{2}\right)\\
&=PC \sin \dfrac {\alpha}{2}\\
&=\require{cancel}\xcancel{CQ}PQ
\end{align*}

即点C到直线OP的距离,于是,结果只能有最小值零了。如果由正弦定理,可全部化成角,不过,会出现3倍角关系。

当然,这里(默认)猜测让这个距离是简单的线性关系了,PA无限靠近,当成了PC平行于OB,不过,似乎是相切更合理,才是。

于是,有上界:\[\require{cancel}\xcancel{0<\vv {OP}\cdot \vv {PC}<\sqrt 3}\]

PA重合时,个人没法理解,所以,这里PAC均不重合,即未考虑P在两个端点的情形.



硬算吧,全部化三角,继续,在三角形$POC$中由正弦定理,有
\begin{align*}
  PC&=\dfrac {\sin\left(\dfrac \pi3-\alpha\right)}{\sin \left(\dfrac \pi6+\dfrac \alpha2\right)}\\[2em]
  \therefore \vv {OP}\cdot{PC}&=\dfrac {\sin\left(\dfrac \pi3-\alpha\right)}{\sin \left(\dfrac \pi6+\dfrac \alpha2\right)}\cdot \sin\left(\dfrac \alpha2\right)\\
  &=\dfrac {\sin\left(\dfrac \alpha2\right) \sin\left(\dfrac \pi3-\alpha\right)}{\sin \left(\dfrac \pi6+\dfrac \alpha2\right)}
\end{align*}

记$\beta=\dfrac \pi6+\dfrac \alpha2\in\left(\dfrac \pi6,\dfrac \pi3\right)$,则
\begin{align*}
  \vv {OP}\cdot{PC}&=\dfrac {\sin\left(\beta -\dfrac \pi6\right) \sin\left(\dfrac {2\pi}3-2\beta\right)}{\sin \beta}\\
  &=-\dfrac {\cos\left(\dfrac {\pi}2-\beta\right) -\cos\left(3\beta-\dfrac {5\pi}6\right)}{2\sin \beta}\\
  &=-\dfrac {\sin\beta +\cos\left(3\beta+\dfrac {\pi}6\right)}{2\sin \beta}\\
  &=-\dfrac12 - \dfrac {\cos\left(3\beta+\dfrac {\pi}6\right)}{2\sin \beta}\\
\end{align*}


考察函数

\[g(x)=- \dfrac {\cos\left(3x+\dfrac {\pi}6\right)}{\sin x},x\in\left(\dfrac \pi6,\dfrac \pi3\right) \]


对其求导,有
\begin{align*}
g'(x)&= \dfrac {3\sin\left(3x+\dfrac {\pi}6\right)\sin x+\cos \left(3x+\dfrac {\pi}6\right)\cos x}{\sin^2 x}\\
&=\dfrac {2\sin\left(3x+\dfrac {\pi}6\right)\sin x+\cos \left(2x+\dfrac {\pi}6\right)}{\sin^2 x}\\
&=\dfrac {-\cos\left(4x+\dfrac {\pi}6\right)+2\cos \left(2x+\dfrac {\pi}6\right)}{\sin^2 x}
\end{align*}

再单独考察分子,有

\begin{align*}
h(x)&= -\cos\left(4x+\dfrac {\pi}6\right)+2\cos \left(2x+\dfrac {\pi}6\right),x\in\left(\dfrac \pi6,\dfrac \pi3\right)\\
h'(x)&= 4\sin\left(4x+\dfrac {\pi}6\right)-4\sin \left(2x+\dfrac {\pi}6\right)\\[2ex]
&\left(4x+\dfrac {\pi}6\right)\in\left(\dfrac {5\pi}6,\dfrac {3\pi}2\right)\\
&\left(2x+\dfrac {\pi}6\right)\in\left(\dfrac \pi2,\dfrac {5\pi}6\right)\\
\therefore 4x+\dfrac {\pi}6&>2x+\dfrac {\pi}6\\
\Rightarrow  \sin\left(4x+\dfrac {\pi}6\right)&<\sin \left(2x+\dfrac {\pi}6\right)\\[2em]
\end{align*}
这表明,$h(x)= -\cos\left(4x+\dfrac {\pi}6\right)+2\cos \left(2x+\dfrac {\pi}6\right)$在$x\in\left(\dfrac \pi6,\dfrac \pi3\right)$上单调递减,而

\begin{align*}
  h\left(\dfrac \pi6\right)&= -\cos\left(\dfrac {4\pi}6+\dfrac {\pi}6\right)+2\cos \left(\dfrac {2\pi}6+\dfrac {\pi}6\right)=\frac {\sqrt 3}2>0\\
  h\left(\dfrac \pi3\right)&= -\cos\left(\dfrac {4\pi}3+\dfrac {\pi}6\right)+2\cos \left(\dfrac {2\pi}3+\dfrac {\pi}6\right)=-\sqrt 3<0
\end{align*}

则$h(x)$在$x\in\left(\dfrac \pi6,\dfrac \pi3\right)$有惟一零点

\[h\left(x_0\right)= -\cos\left(4x_0+\dfrac {\pi}6\right)+2\cos \left(2x_0+\dfrac {\pi}6\right)=0=g'(x_0)\]

进一步知

\[g(x)_{\max}=- \dfrac {\cos\left(3x_0+\dfrac {\pi}6\right)}{\sin x_0} =??\]



硬算也没结果,不过,可以知道的是P在弧中点的时间并不是最大的

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-19 21:42:45
回复  kuing
个人以为

令$\angle AOP=\alpha<\dfrac \pi3$,直接由向量定义计算:
\begin{align*}
\vv {OP}\cdot \vv {PC}&=1\times PC \cos \left(\dfrac {\pi}{2}-\dfrac {\alpha}{2}\right)\\
&=PC \sin \dfrac {\alpha}{2}\\
&=CQ
\end{align*}
isee 发表于 2014-5-19 21:25

PC sin(a/2)= PQ

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-19 21:45:32
Last edited by isee at 2014-5-19 22:36:00回复 4# kuing


    哈哈,湖涂啊。原帖不改了。

=============

扩成直线,还很好看的。60度


snap.png





90度  


snap90.png




来个随机小角,7.8度


snap7.8.png

和前几天google这个 kuing.cjhb.site/forum.php?mod=viewthread&tid=2730&page=1 很像

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-19 23:31:16
回复 5# isee
,你莫非还把点$Q$的轨迹都搞出来?

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-19 23:33:44
回复 6# 其妙

Q点的轨迹方程大概利用张角定理就可以了

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-20 20:31:26
3楼补充完了,不过,也没结果。



不过,如果没计算错的话,点P在弧中点也不是最大,哈哈,真想知道这题的结果是什么

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-5-20 20:54:10
回复 8# isee

话说,既然3#修改的话,我建议改一下那个图,黄色的线我几乎看不到……

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-20 21:44:52
blog.sina.com.cn/s/blog_d7f6c5a90101qmid.html
早上凑巧看到连接,没检查过对错

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-20 22:05:16
Last edited by isee at 2014-5-20 22:35:00回复 10# realnumber


    差太多了——看了,偶用不上呢

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-20 22:05:38
回复  isee

话说,既然3#修改的话,我建议改一下那个图,黄色的线我几乎看不到…… ...
kuing 发表于 2014-5-20 20:54
不改,嘿嘿,你显示器要更新了

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-20 22:29:32
回复 11# isee
我对几何看来有阴影。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-20 22:33:26
回复 13# realnumber

别失落,别失落,那个也有圆上动点的,还有可以参考的,虽然用不上。

谢谢啦

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-20 23:37:34
我倒发现下面的链接和这个题差不多,是不是题目被篡改了?
blog.sina.com.cn/s/blog_54df069f0101hta6.html

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-21 09:22:26
回复 15# 其妙

有道理,新浪博客其妙真能找啊。

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-5-21 12:03:37
回复 15# 其妙

你很细心,题目是不一样啊。
把 博客中的 图 贴一下。

向量.PNG

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-21 18:16:42
回复 16# isee
kk老说我博客dang的嘛,   

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-5-22 16:29:59
早上凑巧看到连接,没检查过对错
realnumber 发表于 2014-5-20 21:44
博客解答得还行。
就是不知道λ+μ的几何意义从何而来。

手机版Mobile version|Leisure Math Forum

2025-4-22 20:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list