Forgot password?
 Register account
View 2709|Reply 8

[不等式] 来自某教师群大前晚和前晚的不等式

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2014-5-22 21:23 |Read mode

广雅杨(5257*****) 2014-05-19 23:03:08
此题怎么做?
QQ图片20140522204925.jpg
广州kuing/kun 23:20:42
我可以说这个不等式不成立么……
广州kuing/kun 23:23:17
a = 7/8, b = 9/8, c = 1 验证下……

广雅杨(5257*****) 2014-05-20 20:58:06
此题怎么做?
QQ图片20140522205043.jpg
这个就有点难,直到刚才想弄了出来,而且还多亏突然想起了这个贴 kkkkuingggg.haotui.com/thread-645-1-7.html ,于是决定试一下 can 的招式,结果一试就成功,真神奇。

由条件及柯西不等式,有
\begin{align*}
\sum\frac{a+1}{b^2+c}&=\sum\frac{(2a+c)^2(a+1)^2}{(2a+c)^2(a+1)(b^2+c)} \\
& \geqslant \frac{\left( \sum(2a+c)(a+1) \right)^2}{\sum(2a+c)^2(a+1)(b^2+c)} \\
& =\frac{9\left( 2\sum a^2+\sum ca+3\sum a \right)^2}{\sum(2a+c)^2(3a+3)(3b^2+3c)} \\
& =\frac{3\left( \sum a \right)\left( 2\sum a^2+\sum ab+\left( \sum a \right)^2 \right)^2}{\sum(2a+c)^2(4a+b+c)(3b^2+ac+bc+c^2)},
\end{align*}
故此要证原不等式只需证
\[\left( \sum a \right)\left( 2\sum a^2+\sum ab+\left( \sum a \right)^2 \right)^2\geqslant \sum(2a+c)^2(4a+b+c)(3b^2+ac+bc+c^2),\]
为方便书写,记 $p=a+b+c$, $q=ab+bc+ca$,则上式展开整理等价于
\[9(p^2-4q)(a^2b+b^2c+c^2a+abc)+9(11p^2-5q)abc+8p^3(p^2-4q)+pq(p^2-3q)\geqslant 0, \quad (*)\]
若 $p^2\geqslant 4q$,式 (*) 显然成立,而当 $p^2<4q$ 时,由均值知 $p^2\geqslant 3q$,即 $4q>p^2\geqslant 3q$,此时,由已知的经典不等式
\[a^2b+b^2c+c^2a+abc\leqslant \frac4{27}p^3\]以及 Schur 不等式\[abc\geqslant \frac{4pq-p^3}9,\]
可知要证式 (*) 只需证
\[9(p^2-4q)\cdot \frac4{27}p^3+9(11p^2-5q)\cdot \frac{4pq-p^3}9+8p^3(p^2-4q)+pq(p^2-3q)\geqslant 0,\]
因式分解等价于
\[\frac13p(23q-5p^2)(p^2-3q)\geqslant 0,\]
由 $4q>p^2\geqslant 3q$ 可知显然成立。

综上,原不等式获证。

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2014-5-23 16:13
哈哈,这个问题简单,所谓的can的招法,刚好凑巧,其实,要多少就有多少,你试一下
(5a+b+3c)、(5a+3c)...................

最后要证明的五次式也可以最终一行解决。

84

Threads

2338

Posts

110K

Credits

Credits
13086

Show all posts

其妙 Posted 2014-5-23 18:01
回复 2# 睡仙
县长来啦?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2014-5-28 21:30
回复 2# 睡仙

能不能更具体些,让我们这些弱渣能吸收点知识?

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2014-5-28 21:45
擦,,,,

\begin{align*}
\sum\frac{a+1}{b^2+c}&=\sum\frac{(2a+c)^2(a+1)^2}{(2a+c)^2(a+1)(b^2+c)} \\
& \geqslant \frac{\left( \sum(2a+c)(a+1) \right)^2}{\sum(2a+c)^2(a+1)(b^2+c)} \\
& =\frac{9\left( 2\sum a^2+\sum ca+3\sum a \right)^2}{\sum(2a+c)^2(3a+3)(3b^2+3c)} \\
& =\frac{3\left( \sum a \right)\left( 2\sum a^2+\sum ab+\left( \sum a \right)^2 \right)^2}{\sum(2a+c)^2(4a+b+c)(3b^2+ac+bc+c^2)},
\end{align*}


脑子,这式子,直接卡住

84

Threads

2338

Posts

110K

Credits

Credits
13086

Show all posts

其妙 Posted 2014-5-29 12:44
回复 5# isee
同卡,

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-5-29 12:56
好恶心

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

 Author| kuing Posted 2014-5-29 16:48
回复 7# Tesla35

QQ图片20140529164816.jpg

84

Threads

2338

Posts

110K

Credits

Credits
13086

Show all posts

其妙 Posted 2014-5-29 17:58
回复 7# Tesla35
要黑,就在粉丝群里黑噻,

Mobile version|Discuz Math Forum

2025-6-3 06:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit