Forgot password?
 Register account
View 2376|Reply 15

[几何] 文科向量小题

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-5-27 13:58 |Read mode
1.圆O的弦AB=6,则$\vv{AB}·\vv{AO}$的值是_______.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-5-27 14:03
2.设非零向量$\vv{a},\vv{b},\vv{c}$满足$\abs{\vv{a}-\vv{b}}=\abs{\vv{a}+\vv{b}}$,且$\abs{\vv{a}}=\abs{\vv{b}}=\abs{\vv{a}+\vv{b}+\vv{c}}=1$,则$\abs{\vv{a}·\vv{c}}$的取值范围是_________.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-5-27 14:15
3.在ΔABC中,已知AB=2,BC=3,∠ABC=60°,BD⊥AC,D为垂足,则$\vv{BD}·\vv{BA}$的值为________.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-5-27 17:54
4.向量$\vv{a},\vv{b}$满足$\abs{\vv{a}}=\abs{\vv{b}}=\vv{a}·\vv{b}=2$,
且$(\vv{a}-\vv{c})·(\vv{b}-2\vv{c})=0$,则$\abs{\vv{b}-\vv{c}}$的最小值为__________.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-5-27 17:59
5.设非零向量$\vv{a},\vv{b}$满足$\abs{\vv{a}}=\abs{\vv{a}+2\vv{b}}=1$,则$\abs{\vv{a}+\vv{b}}+\abs{\vv{b}}$的取值范围为______.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-5-27 18:05
6.已知点P在ΔABC内(包括边界),且$\vv{AP}=λ\vv{AB}+μ\vv{AC}$,若对于满足条件的λ和μ,都有$\abs{aλ+bμ}\le2$成立,则动点Q(a,b)形成的平面区域的面积为_________.
其实上面有些问题是理科的,侧重点似乎也不在向量.帖子标题不修改了.

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-21 08:16
Last edited by 走走看看 2022-3-6 17:26题目还不错。

1、答案显然是$\frac{AB^2}{2}=18$
2、由前一个式子容易得出a、b两向量垂直,然后,建坐标系。设c(x,y),代入第二个式子,易得条件是圆。所求是|x|的取值范围,所以是[0,2]。
3、只能得出是$BD^2$,后面用解三角形的方式求解,显然不够完美,答案是$\frac{27}{7}$,希望能继续用向量解决。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-10-21 09:16
全部可以构造图形处理。
浙江理科考向量实际是考平面几何。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-21 09:39
说得对。
不过觉得第6题不是那么容易。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-10-21 13:47
回复 9# 走走看看
6实际是坐标代换。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-10-21 15:54
6. 由 $P$ 的位置限制可知 $\lambda$, $\mu\geqslant 0$, $\lambda+\mu\leqslant 1$,故此
\[\abs{a\lambda+b\mu}
\leqslant \lambda\abs a+\mu\abs b
\leqslant (\lambda+\mu)\max\{\abs a,\abs b\}
\leqslant \max\{\abs a,\abs b\},\]
当 $\lambda$, $\mu$ 中的某个为 $1$ 另一个为 $0$ 时取等,故此 $\abs{a\lambda+b\mu}$ 的最大值为 $\max\{\abs a,\abs b\}$,所以条件化为 $\max\{\abs a,\abs b\}\leqslant 2$ 恒成立,显然区域就是个 $4\times4$ 的正方形。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-10-21 23:46
回复 3# realnumber
BD=mBA+(1-m)BC,且BD*(AB+BC)=0,从而求出m.下面就简单了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-10-21 23:50
Last edited by 敬畏数学 2017-10-22 13:40回复 4# realnumber
此题没有说明是否平面向量,如是平面向量。设a=(2,0),b=(1,根号3),c=(x,y),下面简单

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-10-21 23:57
Last edited by 敬畏数学 2017-10-22 13:41回复 5# realnumber
同样,此题没有说明是平面向量,如是平面向量。a=(1,0),b=(x,y),求得B(X,Y)轨迹,M(-1,0),O(0,0),所求就为|BM|+|BO|

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-10-22 09:25
回复 6# realnumber
记λ, μ⩾0,λ+μ⩽1的区域为D,当且仅当D的端点满足|aλ+bμ|≤2,即|a|≤2且,|b|≤2,Q(a,b)形成的平面区域的面积为16。#

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-22 20:17
Last edited by 走走看看 2017-10-22 20:43很好!

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit