Forgot password?
 Register account
View 2143|Reply 8

[数列] 求通项

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2014-5-28 11:32 |Read mode
如图
无标题.png

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-5-28 11:53
题目哪里来的啊.没见过,不会```

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-5-28 12:05
两边除以 (n+1)! 再求和,别指望化简了。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-5-28 14:19
回复 1# guanmo1


早就研究过了........
如果数列$a_{n+1}=pna_n+q, a_1=r$,有:
\[a_n=[r+\frac{q}{p}(e^{\frac{1}{p}}-1)]p^{n-1}(n-1)!-\frac{q}{p}e^{\frac{1}{p}}\int_0^1x^{n-1}e^{-\frac{x}{p}}dx\]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-5-28 21:52
回复  guanmo1


早就研究过了........
如果数列$a_{n+1}=pna_n+q, a_1=r$,有:
\[a_n=[r+\frac{q}{p}(e ...
战巡 发表于 2014-5-28 14:19
牛笔!还和积分有关!

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2014-5-29 11:15
回复 3# kuing


    是的,不可能化简,看了战巡的解答才知道这玩意确实不能用初等办法算出“通项”来。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-30 06:54
战巡 发表于 2014-5-28 07:19
如果数列$a_{n+1}=pna_n+q, a_1=r$,有:
\[a_n=[r+\frac{q}{p}(e^{\frac{1}{p}}-1)]p^{n-1}(n-1)!-\frac{q}{p}e^{\frac{1}{p}}\int_0^1x^{n-1}e^{-\frac{x}{p}}dx\]

牛笔!
怎样证明啊

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-30 07:05
我们代入$n=1$验证一下吧
\begin{align*}
a_1&=r+\frac{q}{p}(e^{\frac{1}{p}}-1)-\frac{q}{p}e^{\frac{1}{p}}\int_0^1e^{-\frac{x}{p}}dx\\
&=r+\frac{q}{p}(e^{\frac{1}{p}}-1)-\frac{q}{p}e^{\frac{1}{p}}p(1-e^{-\frac1p})\\
&=r+\frac{q}{p}(e^{\frac{1}{p}}-1)-q(e^{\frac1p}-1)\\
\end{align*}
怎么不是$r$呢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-30 17:23
若改成
$a_n=[r+q(e^{\frac{1}{p}}-1)]p^{n-1}(n-1)!-\frac{q}{p}e^{\frac{1}{p}}\int_0^1x^{n-1}e^{-\frac{x}{p}}dx$
就能满足$a_1=r$.
验证$a_{n+1}=pna_n+q$:
\begin{align*}
pna_n+q&=r+q(e^{\frac1p}-1)p^nn!-qe^{\frac1p}\int_0^1nx^{n-1}e^{-\frac xp}dx+q\\
&=r+q(e^{\frac1p}-1)p^nn!-qe^{\frac1p}\left(e^{-\frac1p}+\frac1p\int_0^1x^ne^{-\frac xp}dx\right)+q\\
&=r+q(e^{\frac1p}-1)p^nn!-\frac qpe^{\frac1p}\int_0^1x^ne^{-\frac xp}dx\\
\end{align*}
确实是对的喔

$\int_0^1x^{n-1}e^{-\frac{x}{p}}dx=p^n\left(\Gamma(n) - \Gamma(n, \frac1p)\right)$

incomplete gamma function

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit