|
若改成
$a_n=[r+q(e^{\frac{1}{p}}-1)]p^{n-1}(n-1)!-\frac{q}{p}e^{\frac{1}{p}}\int_0^1x^{n-1}e^{-\frac{x}{p}}dx$
就能满足$a_1=r$.
验证$a_{n+1}=pna_n+q$:
\begin{align*}
pna_n+q&=r+q(e^{\frac1p}-1)p^nn!-qe^{\frac1p}\int_0^1nx^{n-1}e^{-\frac xp}dx+q\\
&=r+q(e^{\frac1p}-1)p^nn!-qe^{\frac1p}\left(e^{-\frac1p}+\frac1p\int_0^1x^ne^{-\frac xp}dx\right)+q\\
&=r+q(e^{\frac1p}-1)p^nn!-\frac qpe^{\frac1p}\int_0^1x^ne^{-\frac xp}dx\\
\end{align*}
确实是对的喔
$\int_0^1x^{n-1}e^{-\frac{x}{p}}dx=p^n\left(\Gamma(n) - \Gamma(n, \frac1p)\right)$
incomplete gamma function |
|