Forgot password?
 Register account
View 1522|Reply 2

记下一道题...

[Copy link]

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-6-9 22:24 |Read mode
求极限:
\[\lim_{n\to+\infty}\frac{\ln(n)}{n}[\frac{\sum_{k=1}^{n-1}\csc(\frac{k\pi}{n})}{\ln(n)}-\frac{2n}{\pi}]\]
\[\lim_{n\to+\infty}\frac{\ln(n)}{n}[\frac{\sum_{k=1}^{n-1}\csc(\frac{k\pi}{n})}{\ln(n)}-\frac{2n}{\pi}]=\lim_{n\to+\infty}[\frac{\sum_{k=1}^{n-1}\csc(\frac{k\pi}{n})}{n}-\frac{2\ln(n)}{\pi}]\]
\[=\lim_{n\to+\infty}[\frac{\sum_{k=1}^{n-1}(\csc(\frac{k\pi}{n})-\frac{2n}{k\pi})}{n}+\sum_{k=1}^{n-1}\frac{2}{k\pi}-\frac{2\ln(n)}{\pi}]\]
\[=\lim_{n\to+\infty}[\frac{\sum_{k=1}^{n-1}(\csc(\frac{k\pi}{n})-\frac{2n}{k\pi})}{n}]+\frac{2\gamma}{\pi}=\frac{1}{\pi}\int_{0}^{\pi}(\csc(x)-\frac{2}{x})dx+\frac{2\gamma}{\pi}\]
\[=\frac{1}{\pi}[\lim_{a\to \pi}\ln(\frac{\tan(\frac{a}{2})}{a^2})-\lim_{b\to 0}\ln(\frac{\tan(\frac{b}{2})}{b^2})]+\frac{2\gamma}{\pi}\]
\[=\frac{1}{\pi}[\lim_{a\to 0}\ln(\frac{\tan(\frac{\pi-a}{2})}{(\pi-a)^2}\frac{a^2}{\tan(\frac{a}{2})})]+\frac{2\gamma}{\pi}=\frac{\ln(\frac{4}{\pi^2})}{\pi}+\frac{2\gamma}{\pi}\]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2019-6-30 21:39

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-2-28 20:29
Computation of limit in the last line:
\[\frac{\tan(\frac{\pi-a}{2})}{(\pi-a)^2}\cdot\frac{a^2}{\tan(\frac{a}{2})}=\frac{1}{(\pi-a)^2}\cdot\frac{a^2}{\tan(\frac{a}{2})^2}\to\frac1{\pi^2}\cdot4\]

Mobile version|Discuz Math Forum

2025-6-5 19:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit