Forgot password?
 Create new account
View 1992|Reply 6

[不等式] 请教:又一道竞赛小题

[Copy link]

6

Threads

0

Posts

31

Credits

Credits
31

Show all posts

wdjlhx Posted at 2014-6-29 09:07:21 |Read mode
Last edited by wdjlhx at 2014-6-29 11:17:00设非负实数a1+a2+a3+a4+…+a2008的和等于1,则a1a2+a2a3…+a2007a2008+a2008a1的最大值是多少?(08安徽竞赛初赛第10题)

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-6-30 17:38:24
大概利用这个 artofproblemsolving.com/Forum/viewtopic.php?p=2020326#p2020326 取等条件是有两个相邻的 a 都为 1/2

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-6-30 18:45:24
假设$a_{2013}$最大,$a_1=1-a_2-a_3-\cdots-a_{2013}$,
可得所求表达式$M=(1-a_2-a_3-\cdots-a_{2013})(a_2+a_{2013})+a_2a_3+a_3a_4+\cdots+a_{2012}a_{2013}$.
把M分别看作$a_3,a_4,\cdots ,a_{2012}$的一次函数,求导(其实一次函数不需要求导,直接看系数, ).导数都小于等于0,如此可得都为减函数,在$a_3=a_4=\cdots =a_{2012}=0$取得最大值.
此时问题为$a_{2013}+a_1+a_2=1,求a_1(a_{2013}+a_2)$的最大值.
即在$a_{2013}=a_1=0.5$时取得.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-1 20:26:46
有一种看起来似乎很“简单”的方法:设$a_1=\max\{a_1,a_2,\cdots\,a_{2008}\}$,则
                     $a_1a_2+a_2a_3+…+a_{2008}a_1\leqslant a_1a_2+a_1a_3+…+a_{1}a_{2007}+a_{2008}a_1\leqslant(\dfrac{a_1+a_2+\cdots+a_{2008}}{2})^2=\dfrac14$
实际上,\begin{align*}
a_1a_2+a_2a_3+a_3a_4+…+a_{2006}a_{2007}+a_{2007}a_{2008}+a_{2008}a_1&\leqslant a_1a_2+a_1a_3+a_1a_4+…+a_{1}a_{2007}+2a_{2008}a_1\\
&= a_1(a_2+a_3+…+a_{2007}+2a_{2008})\\
&=\cdots
\end{align*}

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-1 20:36:43
实际上,应该是设$a_1=\max\{a_1,a_2,\cdots\,a_{2008}\}$,则
\begin{align*}
a_1a_2+a_2a_3+a_3a_4+…+a_{2007}a_{2008}+a_{2008}a_1&=a_1a_2+a_4a_5+\cdots+a_{2007}a_{2008}+a_{2008}a_1+a_3(a_2+a_4)\\
&\leqslant a_1(a_2+a_4+…+a_{2007}+a_{2008})+a_3(a_2+a_4+…+a_{2007}+a_{2008})\\
&=( a_1+a_3)(a_2+a_4+…+a_{2007}+a_{2008})\\
&\leqslant(\dfrac{a_1+a_3+a_2+a_4+\cdots+a_{2008}}{2})^2=\dfrac14
\end{align*}

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-7-1 21:34:10
回复 5# 其妙

hjj书上好像有这个方法

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-1 22:46:24
回复 6# kuing

手机版Mobile version|Leisure Math Forum

2025-4-22 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list