Forgot password?
 Register account
View 2135|Reply 4

[数论] 不同余数的个数

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2014-6-29 15:00 |Read mode
求$ 1^{2013},2^{2013},......,2013^{2013} $除以 $2013 $ ,得到的不同余数的个数。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-6-29 16:08
Last edited by tommywong 2014-9-9 10:22问题是怎么知道61少了16...吗

(更正:61少了40)

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-9-9 10:25

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-9-9 17:08
那边推出公式了

$\displaystyle \frac{\varphi(p^k)}{(\varphi(p^k),m)}+\frac{\varphi(p^{k-m})}{(\varphi(p^{k-m}),m)}+\frac{\varphi(p^{k-2m})}{(\varphi(p^{k-2m}),m)}+...+1$

$\displaystyle \frac{\varphi(3)}{(\varphi(3),1)}+1=3$

$\displaystyle \frac{\varphi(11)}{(\varphi(11),3)}+1=11$

$\displaystyle \frac{\varphi(61)}{(\varphi(61),33)}+1=21$

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-9-13 10:05
在东论有证明了。
bbs.cnool.net/cthread-105405736.html

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit