Forgot password?
 Register account
View 2168|Reply 5

[不等式] 今天一学生问的指数不等式问题

[Copy link]

45

Threads

51

Posts

0

Reputation

Show all posts

等待hxh Posted 2014-6-29 22:46 |Read mode
QQ图片20140629224515.jpg

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber Posted 2014-6-30 10:39
Last edited by realnumber 2014-6-30 10:48回复 1# 等待hxh


    你的学生好厉害啊,试了下似乎有$f(x)=x^b+b^c-x^c,1>x\ge b$是增函数.
如果能证明成立,那么只需要x=b成立即可,而这个代入即得.


求导,即要证明$ba^{b-1}-ca^{c-1}>0$
构造函数$g(t)=\ln{(ta^{t-1})},0<t\le a $,对t求导,即要证明$\frac{1}{t}+\ln{a}>0$,即$a^t>\frac{1}{e}$
左边为t的减函数,只需要证明t=a成立即可,即,只需要证明$a^a>\frac{1}{e}$.左边相应的函数$h(x)=x^x,x>0$取对数,求导,得$x=\frac{1}{e}$时,最小.所以1楼不等式成立.

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing Posted 2014-6-30 17:40
又一个漂亮的幂指不等式,楼上可以拿来研究下,看能不能整点推广。

PS、to 楼主,一行的题目,何不试试代码输入?

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber Posted 2014-6-30 19:36
1楼的条件,从几何画板图象看,可以修改为$a,b,c\in (0,1)$,证明很简单.

84

Threads

2336

Posts

4

Reputation

Show all posts

其妙 Posted 2014-7-1 20:04

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber Posted 2014-7-1 21:02
回复 5# 其妙


    en ,是我想复杂了

|Mobile version

2025-6-7 21:45 GMT+8

Powered by Discuz!

Processed in 0.011657 second(s), 23 queries

× Quick Reply To Top Edit