|
谢谢kuing
参考:
aoshoo.com/bbs1/dispbbs.asp?boardid=14&Id … 7&authorid=25637
来源:2008南开第5题
解析:源自Real555
定理*:$A=M_n=max{a,1/a,b,1/b}$,若$M《a+1/a+b+1/b$或$M≤2a+1/a+b$或$M≤a+2b+0.5(1/a+1/b)$等诸如此类,则$M≤3A+1$(说明a,1/a至少有一个不大于1)
$M_(n+3)=max{2/(b+2/(a+b)),(b+2/(a+b))/2,2/(2/(a+b)+2/(b+2/(a+b))),(2/(a+b)+2/(b+2/(a+b)))/2}$,
证明过程中一直在用不等式$4/(x+y)≤1/x+1/y$,其中x、y∈R+.---①
接下来证明关于$M_(n+3)$中4个数都符合定理*.
$4×2/(b+2/(a+b))≤2(1/b+(a+b)/2)=1/b+1/b+a+b≤3A+1$
$4(b+2/(a+b))/2≤2b+1/a+1/b≤3A+1$
$4×2/(2/(a+b)+2/(b+2/(a+b)))≤4/(a+b)+4/(b+2/(a+b))≤1/a+1/b+1/b+(a+b)/2≤3A+1$
$4×(2/(a+b)+2/(b+2/(a+b)))/2≤1/a+1/b+1/b+(a+b)/2≤3A+1$
证明完了. |
|