Forgot password
 Register account
View 2407|Reply 6

[几何] 请教几个几何题,谢谢

[Copy link]

1

Threads

1

Posts

0

Reputation

Show all posts

fangfang posted 2014-7-4 16:27 |Read mode
1.jpg
2.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-4 16:45
第一题可以参考这个链接 forum.php?mod=viewthread&tid=2500

1

Threads

1

Posts

0

Reputation

Show all posts

original poster fangfang posted 2014-7-4 16:53
原来这么难啊,难怪不会做!谢谢kuing

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-4 17:02
这些求角度题都是看似容易实则很难……我基本上都不会
其余的两题得等isee来看了……

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-7-5 16:04
回复 1# fangfang

26.jpg
如图,作$AE=AC$,且$E$在$CD$延长线上
易证$∠ADB=∠ADE=76\du$,$AE=AB$,又显然两个三角形都是锐角的(因为另一个对应的三角形是$△ACD$,显然为钝角)
可证$△ADB≌△ADE$,有$∠DBA=∠DEA=60\du=∠DCA$
因此$A, B, C, D$共圆,$∠CDB=∠CAB=28\du, ∠DBC=∠DAC=44\du-28\du=16\du$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-7-5 16:40
回复 1# fangfang

27.jpg

作正三角形$△AED$,其他连线如图
易证$AD=BD, ∠ABC=∠ACB=72\du, AB=AC$,又易知$∠BDE=∠ADB-∠ADE=84\du-60\du=24\du$
$AD=DE=BD$,可知$A, E, B$都在$D$为圆心$AD$为半径的圆上,有$∠BAE=\frac{1}{2}∠BDE=12\du=∠DAC$
那么$AD=AE, AB=AC, ∠DAC=∠BAE$,有$△ADC≌△ABE, ∠DCA=∠ABE=\frac{1}{2}∠ADE=30\du$

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-7-5 20:40
sin50sin20sin(110-x)sin40=sin60sin50sinxsin30
sin20sin(110-x)sin40=sin60sinxsin30
sin20sin40sin110=(sin30sin60+sin20sin40cos110)tanx
x=30

sin(60-2x)sinxsin(92-2x)sin76=sin60sin(x+60)sin28sin(2x-16)
x=16

sin36sin24sinxsin84=sin48sin72sin(84-x)sin12
sinxsin84sin78=sin48sin54sin(84-x)
(sin84sin78+sin48sin54cos84)tanx=sin48sin54sin84
x=30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:12 GMT+8

Powered by Discuz!

Processed in 0.013577 seconds, 25 queries