Forgot password
 Register account
View 2406|Reply 7

[不等式] 两个数列不等式求证

[Copy link]

1

Threads

2

Posts

0

Reputation

Show all posts

似水无痕 posted 2014-7-6 19:11 |Read mode
1题.证明:对任意正整数n有

2题证明对自然数m≥n≥1, 有

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-6 19:39
图片可以直接上传,不要用百度图片外链,我们看不到
当然,你也可以试试用代码写公式

1

Threads

2

Posts

0

Reputation

Show all posts

original poster 似水无痕 posted 2014-7-6 19:52

RE: 两个数列不等式求证

未命名2.JPG

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-7-9 08:11
$\displaystyle \sum_{i=1}^n (\frac{i}{n})^n = \sum_{i=0}^{n-1} (1-\frac{i}{n})^n \le \sum_{i=0}^{n-1} e^{-i} = \frac{e^{-n}-1}{e^{-1}-1} < \frac{e}{e-1}$

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2014-7-9 12:26
Last edited by 战巡 2014-7-9 15:52回复 3# 似水无痕

之前搞错了,重新来过

第一个左边:
\[\sum_{i=1}^n(\frac{i}{n})^n=\sum_{i=0}^{n-1}(1-\frac{i}{n})^n\]
令$\frac{1}{n}=x$,有:
\[\sum_{i=0}^{n-1}(1-\frac{i}{n})^n=\sum_{i=0}^{n-1}(1-ix)^\frac{1}{x}\]
\[=\sum_{i=0}^{n-1}[e^{-i}-\frac{e^{-i}i^2x}{2}+o(x)]=\sum_{i=0}^{n-1}[e^{-i}-\frac{e^{-i}i^2}{2n}+o(\frac{1}{n})]\]
\[\ge\sum_{i=0}^{n-1}[e^{-i}-\frac{e^{-i}i^2}{2n}]\]
\[=\frac{e}{e-1}-\frac{e(e+1)}{2(e-1)^3}·\frac{1}{n}+\frac{(e-1)^2(n-2)+2(e-1)+(e+1)\frac{1}{n}}{2(e-1)^3e^{n-1}}\]
当$n\ge 2$就有
\[\ge\frac{e}{e-1}-\frac{1}{n}\]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-7-9 13:57
回复 5# 战巡

は?
$\displaystyle \sum_{i=0}^{n-1} (1-\frac{i}{n})^{n-1} (1-\frac{i}{n}) \ge \sum_{i=0}^{n-1} e^{-i} (1-\frac{i}{n})$

1

Threads

2

Posts

0

Reputation

Show all posts

original poster 似水无痕 posted 2014-7-9 20:48
回复 5# 战巡
原来如此,真难想到。第二题呢?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-7-10 20:06
回复 4# tommywong
右边比较好证明

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 08:12 GMT+8

Powered by Discuz!

Processed in 0.014718 seconds, 26 queries