Forgot password?
 Register account
View 2535|Reply 6

[数论] 一个整除问题

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted 2014-7-9 22:30 |Read mode
Last edited by hbghlyj 2025-3-4 02:39已知 $x,y \inN^+$,且 $x^2+y^2-x$ 能被 $2xy$ 整除,求证:$x$ 为完全平方数。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-7-9 22:45
……这代码有多难写啊?
上标就是 ^
属于就是 \in
于是这样写就行了:
已知 \$x,y \in N^+\$,且 \$x^2+y^2-x\$ 能被 \$2xy\$ 整除,求证:\$x\$ 为完全平方数。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-7-10 11:31
Last edited by tommywong 2018-4-11 18:20$x^2+y^2-x \equiv 0 (mod 2xy)$

$x^2+y^2-x \equiv 0 (mod xy)$

$y^2 \equiv 0 (mod x)$

假设$x$不是平方数,则$y$必含因子$x$(←错),设$y=kx$

$x^2+k^2x^2-x \equiv 0 (mod kx^2)$

$-x \equiv 0 (mod x^2)$不成立,与假设矛盾

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-7-10 20:03
$x^2+y^2-x \equiv 0 (\mod{\kern4pt} 2xy)$

$x^2+y^2-x \equiv 0 (\mod{\kern4pt} xy)$

$y^2 \equiv 0 (\mod{\kern4pt} x)$

假设$x$不是平 ...
tommywong 发表于 2014-7-10 11:31
这样写效果怎样?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-7-10 20:32
回复 4# 其妙

x^2+y^2-x \equiv 0 \pmod{2xy} gives $x^2+y^2-x \equiv 0 \pmod{2xy}$

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2018-4-11 18:27
3楼错了,重新来过

$2xy|x^2+y^2-x$

$x=\prod_i p_i^{2k_i}\prod_j p_j^{2k_j+1},(p_i,p_j)=1$

需证$\forall j,p_j=1$,使得$x=\prod_i p_i^{2k_i}=(\prod_i p_i^{k_i})^2$为平方数

$x|y^2\Rightarrow p_j^{2k_j+1}|y^2\Rightarrow p_j^{k_j+1}|y$

$p_i^{2k_i}|y^2\Rightarrow p_i^{k_i}|y$

设$y=q\prod_i p_i^{k_i}\prod_j p_j^{k_j+1}$

$2y|x+q^2\prod_j p_j-1$

$\forall j,p_j|1\Rightarrow p_j=1$

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2018-4-13 21:36
以下字母都是正整数
设(x,y)=m,那么x=ma,y=mb,(a,b)=1
问题即为$2m^2ab\mid m^2a^2+m^2b^2-ma$
即$2mab\mid ma^2+mb^2-a$,得出$a\mid m$,$m\mid a$
得到m=a
所以$x=a^2$,又x=1,y=2说明有解.

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit