Forgot password
 Register account
View 2862|Reply 3

[不等式] 请教一个不等式题

[Copy link]

1

Threads

0

Posts

0

Reputation

Show all posts

suqianchenzhu posted 2013-9-24 18:32 |Read mode
YA2{V09``8]NHBZEWT)E~VH.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-24 22:31
表面看着吓人,其实是很弱的不等式,首先变形为
\[\left( \frac13\sum\sqrt[3]{\frac1a+\frac2{bc}+a+2b+2c} \right)^3\leqslant\left( \frac2{abc} \right)^3,\]
由幂平均有
\[\left( \frac13\sum\sqrt[3]{\frac1a+\frac2{bc}+a+2b+2c} \right)^3\leqslant\frac13\sum\left( \frac1a+\frac2{bc}+a+2b+2c \right),\]
所以只要证
\[\frac13\sum\left( \frac1a+\frac2{bc}+a+2b+2c \right)\leqslant \left( \frac2{abc} \right)^3,\]
去分母等价于
\[3(abc)^2+2(abc)^2\sum a+5(abc)^3\sum a\leqslant 24,\]
由均值有
\begin{align*}
abc&\leqslant \left( \frac{ab+bc+ca}3 \right)^{3/2}=1, \\
abc\sum a&\leqslant \frac{(ab+bc+ca)^2}3=3,
\end{align*}
故显然得证。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-25 20:23
回复 2# kuing
,这个不等式真有用:$x^2+y^2+z^2\geqslant3(xy+yz+zx)$

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-10-15 18:20
其妙 发表于 2013-9-25 13:23
回复 2# kuing
[强],这个不等式真有用:$x^2+y^2+z^2\geqslant3(xy+yz+zx)$
好像应该是用$(x+y+z)^2\geqslant3(xy+yz+zx)$?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 20:48 GMT+8

Powered by Discuz!

Processed in 0.021754 seconds, 25 queries