Forgot password?
 Create new account
View 1851|Reply 5

[数列] 中科大少年班

[Copy link]

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

wzxsjz Posted at 2014-7-21 10:05:47 |Read mode
Last edited by wzxsjz at 2014-7-21 16:01:00证明; $\sin\frac{\pi}{n}\sin\frac{2\pi}{n}...\sin\frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}}(n\geqslant2)$

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-21 11:26:49
bbs.pep.com.cn/forum.php?mod=viewthread&tid=250665 这里的结论或者推导方法大概就……

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-21 11:57:26
原来我在旧论坛也抄过
kkkkuingggg.haotui.com/thread-1241-1-3.html
反正是老东西了……

22

Threads

69

Posts

525

Credits

Credits
525

Show all posts

 Author| wzxsjz Posted at 2014-7-21 14:14:38
原来我在旧论坛也抄过

反正是老东西了……
kuing 发表于 2014-7-21 11:57
谢谢!为什么我打出的公式不漂亮?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 12:04:43
回复 4# wzxsjz
$\sin\dfrac{\pi}{n}\sin\dfrac{2\pi}{n}\cdots\sin\dfrac{(n-1)\pi}{n}=\dfrac{n}{2^{n-1}}(n\geqslant2)$

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-25 12:40:14
回复 4# wzxsjz

看置顶,行内公式与行间公式的区别。

手机版Mobile version|Leisure Math Forum

2025-4-23 14:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list