Forgot password
 Register account
View 1962|Reply 5

[数列] 中科大少年班

[Copy link]

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-7-21 10:05 |Read mode
Last edited by wzxsjz 2014-7-21 16:01证明; $\sin\frac{\pi}{n}\sin\frac{2\pi}{n}...\sin\frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}}(n\geqslant2)$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-21 11:26
bbs.pep.com.cn/forum.php?mod=viewthread&tid=250665 这里的结论或者推导方法大概就……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-21 11:57
原来我在旧论坛也抄过
kkkkuingggg.haotui.com/thread-1241-1-3.html
反正是老东西了……

21

Threads

67

Posts

0

Reputation

Show all posts

original poster wzxsjz posted 2014-7-21 14:14
原来我在旧论坛也抄过

反正是老东西了……
kuing 发表于 2014-7-21 11:57
谢谢!为什么我打出的公式不漂亮?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-7-25 12:04
回复 4# wzxsjz
$\sin\dfrac{\pi}{n}\sin\dfrac{2\pi}{n}\cdots\sin\dfrac{(n-1)\pi}{n}=\dfrac{n}{2^{n-1}}(n\geqslant2)$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-7-25 12:40
回复 4# wzxsjz

看置顶,行内公式与行间公式的区别。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 01:22 GMT+8

Powered by Discuz!

Processed in 0.012558 seconds, 23 queries