Forgot password?
 Create new account
View 1973|Reply 10

[数列] 转发几个数列难题

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-7-24 11:11:38 |Read mode
QQ截图20140724111044.jpg
来自不等式群

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-7-25 09:52:52
安徽2014年高考(21)题的(Ⅱ)也很难。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 10:15:19
回复 2# 踏歌而来
广东2014年高考数列解答题难不难?

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-7-26 16:22:55
Last edited by 踏歌而来 at 2014-7-26 17:30:00回复 3# 其妙

这道题的(2)求数列的通项公式有点难。
直接 构造数列比较难,如果用猜想+数学归纳法则比较容易。

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-1 21:24:25
16.

$\displaystyle a_n=(\frac{3+\sqrt{5}}{2})^n-2+(\frac{3-\sqrt{5}}{2})^n=[(\frac{\sqrt{5}+1}{2})^n-(\frac{\sqrt{5}-1}{2})^n]^2$

$\displaystyle b_n=(\frac{\sqrt{5}+1}{2})^n-(\frac{\sqrt{5}-1}{2})^n=1,\sqrt{5},4,3\sqrt{5},11,8\sqrt{5},...,b_{n+4}=3b_{n+2}-b_n$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-2 10:06:29
15.

$\displaystyle a_n=\frac{p_n}{q_n},a_{n+1}=\frac{p_n^2+\frac{q_n^2}{2}}{2p_n q_n}$

$n \neq 1$:

$\displaystyle p_{n+1}=p_n^2+\frac{q_n^2}{2},q_{n+1}=2p_n q_n$

$\displaystyle \sqrt{\frac{2}{2a_n^2-1}}=\frac{4a_{n-1}}{2a_{n-1}^2-1}=\frac{4p_{n-1}q_{n-1}}{2p_{n-1}^2-q_{n-1}^2}=\frac{q_n}{p_{n-1}^2-\frac{q_{n-1}^2}{2}}$

$\displaystyle p_{n-1}^2-\frac{q_{n-1}^2}{2}=(p_{n-2}^2+\frac{q_{n-2}^2}{2})^2-2p_{n-2}^2 q_{n-2}^2=(p_{n-2}^2-\frac{q_{n-2}^2}{2})^2=1$

$\displaystyle \frac{q_n}{p_{n-1}^2-\frac{q_{n-1}^2}{2}}=q_n$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-2 12:26:42
19.(f的无穷映射)

$2^{n_2} 3^{n_3} k \rightarrow 3^{n_3} k$

$n_3 \ge 1$时,$3^{n_3} k \rightarrow 3^{n_3} k+3 \rightarrow 3(\frac{3^{n_3-1}k+1}{2}) = 3^{n_3'} k' \rightarrow 3,6$,$3^{n_3} k>3^{n_3'} k'$

$n_3=0$时,$k \rightarrow k+3 \rightarrow \frac{k+3}{2} = k' \rightarrow 1,2,4$,$k>k'$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-3 10:23:25
续15.

$p_{n+1}=2p_n^2-1,q_{n+1}=2p_n q_n$

$\displaystyle a_n=\frac{(\sqrt{2}+1)^{2^n}+1}{\sqrt{2}[(\sqrt{2}+1)^{2^n}-1]}$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-3 13:35:53
还是15.

$\displaystyle a_{n+1}-\frac{1}{\sqrt{2}}=\frac{a_n}{2}-\frac{1}{\sqrt{2}}-\frac{1}{4a_n}=\frac{1}{2a_n}(a_n-\frac{1}{\sqrt{2}})^2,b_n=a_n-\frac{1}{\sqrt{2}},b_1=\frac{\sqrt{2}-1}{\sqrt{2}}$

$\displaystyle b_{n+1}=\frac{b_n^2}{2(b_n+\frac{1}{\sqrt{2}})},c_n=\frac{1}{b_n},c_1=2+\sqrt{2}$

$\displaystyle c_{n+1}=\sqrt{2}(c_n^2+\sqrt{2}c_n)=\sqrt{2}(c_n+\sqrt{1}{\sqrt{2}})^2-\sqrt{1}{\sqrt{2}},d_n=c_n+\frac{1}{\sqrt{2}},d_1=\frac{4+3\sqrt{2}}{2}$

$d_{n+1}=\sqrt{2}d_n^2,e_n=\sqrt{2}d_n,e_1=3+2\sqrt{2}$

$\displaystyle  e_n=e_{n-1}^2=(3+2\sqrt{2})^{2^{n-1}},d_n=\frac{1}{\sqrt{2}}(\sqrt{2}+1)^{2^n},c_n=\frac{1}{\sqrt{2}}(\sqrt{2}+1)^{2^n}-\frac{1}{\sqrt{2}}$

$\displaystyle b_n=\frac{\sqrt{2}}{(\sqrt{2}+1)^{2^n}-1},a_n=\frac{1}{\sqrt{2}}+\frac{\sqrt{2}}{(\sqrt{2}+1)^{2^n}-1}$

$\displaystyle \frac{4a_{n-1}}{2a_{n-1}^2-1}=\frac{1}{\sqrt{2}}[(\sqrt{2}+1)^{2^{n-1}}-(\sqrt{2}-1)^{2^{n-1}}]$

$x_n=(\sqrt{2}+1)^n-(\sqrt{2}-1)^n,x_{n+4}=6x_{n+2}-x_n$

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-4 15:09:16

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-8-4 15:55:45
18.

设$x_n=\{2^n \sqrt{2}\}$为$2^n \sqrt{2}$的小数部分,
若$a_n$为奇数,$x_n<0.5$,则$a_{n+1}$为偶数。
若$a_n$为奇数,$x_n \ge 0.5$,则$a_{n+1}$为奇数,$x_{n+1}=2x_n-1=x_n-(1-x_n)$递减,当$x_{n+k}<0.5$时$a_{n+k+1}$为偶数。

$[2^n \sqrt{2}]$有无穷多个偶数

手机版Mobile version|Leisure Math Forum

2025-4-22 23:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list