Forgot password?
 Register account
View 2295|Reply 6

[几何] 椭圆离心率的取值范围

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-7-24 15:29 |Read mode
已知椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$的左,右焦点分别为$F_1(-c,0),F_2(c,0))$,若椭圆上存在点$P$使$\dfrac{a}{sin\angle PF_1F_2}=\dfrac{c}{sin\angle PF_2F_1}$,这该椭圆的离心率的取值范围是多少。

682

Threads

110K

Posts

910K

Credits

Credits
90768
QQ

Show all posts

kuing Posted 2014-7-24 15:53
正弦定理,椭圆定义,简单题呀

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2014-7-24 20:32
Last edited by 乌贼 2014-7-24 20:38回复 2# kuing
求过程,我作还得用到三角形两边之差大于第三边,这步不好想到……

682

Threads

110K

Posts

910K

Credits

Credits
90768
QQ

Show all posts

kuing Posted 2014-7-24 20:35
我去……
\[\frac ac=\frac{\sin\angle PF_1F_2}{\sin\angle PF_2F_1}
=\frac{PF_2}{PF_1}=\frac{2a}{PF_1}-1,\]
而 $PF_1\in [a-c,a+c]$,于是……

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2014-7-24 20:41
回复 4# kuing
唉……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-7-25 10:27
重庆高考题吧,关键是如何利用一些不等关系来建立起不等式,从而得到a、c的不等式,即可得到e的范围

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-7-25 11:25
回复  kuing
求过程,我作还得用到三角形两边之差大于第三边,这步不好想到…… ...
乌贼 发表于 2014-7-24 20:32
用高中的公式,建立等式,变成函数

Mobile version|Discuz Math Forum

2025-6-7 17:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit