Forgot password?
 Create new account
View 2186|Reply 6

[几何] 椭圆离心率的取值范围

[Copy link]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2014-7-24 15:29:27 |Read mode
已知椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$的左,右焦点分别为$F_1(-c,0),F_2(c,0))$,若椭圆上存在点$P$使$\dfrac{a}{sin\angle PF_1F_2}=\dfrac{c}{sin\angle PF_2F_1}$,这该椭圆的离心率的取值范围是多少。

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-24 15:53:53
正弦定理,椭圆定义,简单题呀

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2014-7-24 20:32:17
Last edited by 乌贼 at 2014-7-24 20:38:00回复 2# kuing
求过程,我作还得用到三角形两边之差大于第三边,这步不好想到……

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-24 20:35:50
我去……
\[\frac ac=\frac{\sin\angle PF_1F_2}{\sin\angle PF_2F_1}
=\frac{PF_2}{PF_1}=\frac{2a}{PF_1}-1,\]
而 $PF_1\in [a-c,a+c]$,于是……

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2014-7-24 20:41:12
回复 4# kuing
唉……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 10:27:09
重庆高考题吧,关键是如何利用一些不等关系来建立起不等式,从而得到a、c的不等式,即可得到e的范围

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-7-25 11:25:43
回复  kuing
求过程,我作还得用到三角形两边之差大于第三边,这步不好想到…… ...
乌贼 发表于 2014-7-24 20:32
用高中的公式,建立等式,变成函数

手机版Mobile version|Leisure Math Forum

2025-4-23 14:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list