Forgot password?
 Register account
View 1571|Reply 6

2014安徽初赛

[Copy link]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-7-24 23:02 |Read mode
请帮帮忙,谢谢!
设动点$P(t,0),Q(1,t),$其中参数$t\in[0,1],$则线段$PQ$扫过的平面区域的面积是__________

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-7-24 23:24
Last edited by realnumber 2014-7-24 23:43想简单了,我错了

682

Threads

110K

Posts

910K

Credits

Credits
90768
QQ

Show all posts

kuing Posted 2014-7-24 23:34
照搬《数学空间》2013年第4期总第14期P38那个方法就行了。

设 $x_0\in(0,1)$,当 $0<t<1$ 时,直线 $x=x_0$ 与直线 $PQ$ 交于 $K(x_0,y_0)$,易得
\[y_0=\frac{t}{1-t}(x_0-t)=-(1-t)-\frac{1-x_0}{1-t}+2-x_0\leqslant -2\sqrt{1-x_0}+2-x_0,\]
等号显然总能取到,于是,点 $\bigl( x_0,-2\sqrt{1-x_0}+2-x_0 \bigr)$ 必在 $PQ$ 扫过的区域的边界曲线上,亦即边界曲线的解析式为
\[y=-2\sqrt{1-x}+2-x, \]
于是所求面积为
\[\int_0^1-2\sqrt{1-x}+2-x\rmd x=\frac16.\]

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-7-24 23:50
回复 1# wzxsjz


怕毛,硬来就行了
易求曲线族为$F(x,y,t)=\frac{t}{1-t}(x-t)-y=0$
联立方程:
\[\begin{cases} F(x,y,t)=0\\ \frac{\partial F(x,y,t)}{\partial t}=0\end{cases}\]
\[\begin{cases} t(x-t)=y(1-t)\\ x-t(2-t)=0\end{cases}\]
并消掉参数$t$可得包络线方程:
\[y=2-2\sqrt{1-x}-x\]
面积积分可得:
\[S=\int_{0}^1(2-2\sqrt{1-x}-x)dx=\frac{1}{6}\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-7-25 10:19
这里有初赛的所有试题和解答:blog.sina.com.cn/s/blog_54df069f0102uwlb.html

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-7-25 11:28
这样看来,想用几何变换是不可能的喽

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-25 12:53
谢谢各位

Mobile version|Discuz Math Forum

2025-6-7 15:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit