Forgot password?
 Create new account
View 2247|Reply 6

[不等式] 转发一个不等式--

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-7-24 23:12:21 |Read mode
江苏陈
QQ图片20140724231108222111.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94238
QQ

Show all posts

kuing Posted at 2014-7-24 23:15:22
这是原题?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-7-24 23:18:51
$m^2+n^2\ge 2mn$
所以只需要证明$2m^3+2n^3+m^2+n^2\ge 6mn^2$
又$n^2\ge 3mn^2,m^2\ge 3m^3$
所以只需要证明$5m^3+n^3+n^3\ge 3mn^2$
而这个显然成立,因为$m^3+n^3+n^3\ge 3mn^2$.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-7-24 23:19:34
回复 2# kuing


    恩,水母一个

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 11:12:43
回复 4# realnumber
证法不错,整理一下:
\begin{align*}
2m^3+2n^3+2m^2+2n^2
&=(m^3+n^3+n^3)+(m^2+n^2)+n^2+(m^3+m^2)\\
&\geqslant 3mn^2+2mn+3mn^2+(m^3+m^2)\\
&\geqslant 2mn+6mn^2+(m^3+m^2)\\
&\geqslant 2mn+6mn^2
\end{align*}
然后不等式两边除以2即得。
当且仅当$m=n=0$取等号。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-25 11:18:08
本题在原题条件下,可加强为:\begin{align*}
m^3+2n^3+m^2+2n^2
&\geqslant 2mn+6mn^2
\end{align*}

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-7-26 20:20:06
这里也有shaojianbo的判别式解答:blog.sina.com.cn/s/blog_4fdcf29b0102uxng.html
变式题:
1blog图片博客.jpg
变式题的解答:blog.sina.com.cn/s/blog_c27636ef0102uxld.html

手机版Mobile version|Leisure Math Forum

2025-4-23 14:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list