Forgot password?
 Register account
View 2287|Reply 10

[几何] 2014黑龙江

[Copy link]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-7-25 13:30 |Read mode
Last edited by wzxsjz 2014-7-25 13:45设D是锐角$ \triangle ABC $内部的一个点,使得$ \angle ADB=\angle ACB+90^\circ $,并且$ AC \cdot BD=AD \cdot BC$.计算比值$ \frac{AB \cdot CD}{AC \cdot BD} $

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-7-25 15:02
回复 1# wzxsjz
很早以前的IMO吧?

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-25 18:40
Last edited by wzxsjz 2014-7-26 07:56回复 2# 其妙

我不知道,哪一年?请赐教!

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-26 18:52
解答题倒数第3题,不应该太难。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-7-26 19:35
回复 4# wzxsjz
找到啦?

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-27 21:00
是2014黑龙江的  解答题倒数第3题,不应该太难。

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-7-30 19:43
是不是太简单,没兴趣!帮帮忙吧

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-8-6 12:14
回复  wzxsjz
很早以前的IMO吧?
其妙 发表于 2014-7-25 15:02
第​3​4​届​I​M​O​,第一天,第2题的第(1)问,最后结果是$\sqrt 2$,楼主自行查阅详细。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-8-6 12:49
优美的结论:

点$P$为三角形$ABC$内一点,

记$\angle BPC -\angle BAC=\alpha,$
$\angle CPA -\angle CBA=\beta,$
$\angle APB-\angle ACB=\gamma$,

则$\dfrac{PA\cdot BC}{\sin \alpha}=\dfrac{PB\cdot CA}{\sin \beta}=\dfrac{PC \cdot AB}{\sin \gamma}$.

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-8-7 11:43
I  greatly   appreciate  your timely  help

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-8-7 14:50

Mobile version|Discuz Math Forum

2025-6-7 09:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit