|
kuing
Posted 2014-8-5 14:52
还可以试试复数,设 $i$ 为虚数单位,则
\begin{align*}
a_{n+1}-i & =\frac{a_n^3-3a_n}{3a_n^2-1}-i
=\frac{a_n^3-3a_n^2i+3a_ni^2-i^3}{3a_n^2-1}
=\frac{(a_n-i)^3}{3a_n^2-1} ,\\
a_{n+1}+i & =\frac{a_n^3-3a_n}{3a_n^2-1}+i
=\frac{a_n^3+3a_n^2i+3a_ni^2+i^3}{3a_n^2-1}
=\frac{(a_n+i)^3}{3a_n^2-1} ,
\end{align*}
两式相除得
\[\frac{a_{n+1}-i}{a_{n+1}+i}=\left(\frac{a_n-i}{a_n+i}\right)^3,\]
…… |
|