Forgot password?
 Register account
View 2995|Reply 10

[数列] 百度数列吧的一题

[Copy link]

3

Threads

3

Posts

31

Credits

Credits
31

Show all posts

赤睛 Posted 2014-8-5 07:25 |Read mode
数列$\left\{ {{a_n}} \right\}$满足${a_{n + 1}} = \displaystyle\frac{{a_n^3 - 3{a_n}}}{{3a_n^2 - 1}}$,能否求$a_1$的值,使$\left\{ {{a_n}} \right\}$为无穷数列

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-8-5 14:03
这题有地雷吗?踩踩看
$\displaystyle a_1 \neq -\sqrt{3},-\frac{1}{\sqrt{3}},0,\frac{1}{\sqrt{3}},\sqrt{3}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-8-5 14:37
let $a_n=\tan b_n$ ...

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-8-5 14:52
还可以试试复数,设 $i$ 为虚数单位,则
\begin{align*}
a_{n+1}-i & =\frac{a_n^3-3a_n}{3a_n^2-1}-i
=\frac{a_n^3-3a_n^2i+3a_ni^2-i^3}{3a_n^2-1}
=\frac{(a_n-i)^3}{3a_n^2-1} ,\\
a_{n+1}+i & =\frac{a_n^3-3a_n}{3a_n^2-1}+i
=\frac{a_n^3+3a_n^2i+3a_ni^2+i^3}{3a_n^2-1}
=\frac{(a_n+i)^3}{3a_n^2-1} ,
\end{align*}
两式相除得
\[\frac{a_{n+1}-i}{a_{n+1}+i}=\left(\frac{a_n-i}{a_n+i}\right)^3,\]
……

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

琉璃幻 Posted 2014-10-18 06:28
唔哟点

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2014-10-18 10:49

2

Threads

29

Posts

167

Credits

Credits
167

Show all posts

羊1234 Posted 2014-10-18 11:20
还可以试试复数,设 $i$ 为虚数单位,则
\begin{align*}
a_{n+1}-i & =\frac{a_n^3-3a_n}{3a_n^2-1}-i
=\fr ...
kuing 发表于 2014-8-5 14:52
这样可以?这样真的好吗。。。

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2014-10-18 11:25
回复 7# 小芳

我也不知道

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-10-18 12:39
回复 6# 爪机专用
他在说不动点吧。渣渣幻

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-6-15 15:09
回复 4# kuing
极像!
1986年理科高考第八題
\[{x_{n + 1}} = \frac{{{x_n}\left( {{x_n}^2 + 3} \right)}}{{3{x_n}^2 + 1}}\]
哈雷(因计算哈雷彗星轨道而闻名于世)迭代法
《數學傳播》28卷1期:w3.math.sinica.edu.tw/math_media/d281/28109.pdf
《數學傳播》28卷1期民93年3月  P91
也可参看1986年第八期《數學通報》p.39∼42

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-6-15 15:36
回复 4# kuing



未命名.JPG

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit