Forgot password?
 Register account
View 2051|Reply 5

[函数] 抽象函数

[Copy link]

168

Threads

382

Posts

5

Reputation

Show all posts

lrh2006 Posted 2014-8-16 17:27 |Read mode
已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.给出如下结论:
①对任意m∈Z,有f(2^m)=0;
②存在n∈Z,使得f(2^n+1)=9;
③函数f(x)的值域为[0,+∞);
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2^k,2^(k+1))”.
其中所有正确结论的序号是①③④
第④个不清楚,能否解释证明一下,谢谢!

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing Posted 2014-8-16 17:58

168

Threads

382

Posts

5

Reputation

Show all posts

 Author| lrh2006 Posted 2014-8-17 08:50
谢谢万能的kuing.图象一画,就一目了然了。我想再问一下,要是不画图,由“函数f(x)在区间(a,b)上单调递减”,怎样推出“存在k∈Z,使得(a,b)⊆(2^k,2^(k+1))”,谢谢.

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing Posted 2014-8-17 10:35
回复 3# lrh2006

由(3)的推理过程就可以啦,图象也是由(3)的推理得出来的,图我只是顺手画画,其实不画也没所谓。

168

Threads

382

Posts

5

Reputation

Show all posts

 Author| lrh2006 Posted 2014-8-17 15:02
回复 4# kuing


    不好意思,还是不太明白。若“存在k∈Z,使得(a,b)⊆(2^k,2^(k+1))”,则由(3)的推理知,当 x∈(2^k,2^(k+1)] 时,f(x)=2^(k+1)-x ,从而“函数f(x)在区间(a,b)上单调递减”,但是反过来,若“函数f(x)在区间(a,b)上单调递减”,此时表达式未知,如何证明“存在k∈Z,使得(a,b)⊆(2^k,2^(k+1))”

168

Threads

382

Posts

5

Reputation

Show all posts

 Author| lrh2006 Posted 2014-8-17 22:24
怎么没人理我呀?是不是觉得我的问题不值得回答啊?虽然kuing说由(3)的推理知道(4)显然成立,但是我还是不明白必要性怎么证明,求解释,谢谢!

|Mobile version

2025-6-7 21:42 GMT+8

Powered by Discuz!

Processed in 0.011264 second(s), 19 queries

× Quick Reply To Top Edit