Forgot password?
 Register account
View 2306|Reply 8

[数论] 若$m,n$为两个不同的正整数,则$\sqrt m +\sqrt n$为有理数?

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-8-23 00:11 |Read mode
若$m,n$为两个不同的正整数,那么什么情况下$\sqrt m +\sqrt n$为有理数?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-8-23 00:12
这……除了都是完全平方数的情形外还会有其他……?

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2014-8-23 00:39
回复 2# kuing

具体理由呢?结论好猜,怎么说理呢?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-8-23 00:42
不会

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-8-23 01:15
搞个多元推广,线性无关什么的……?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-8-23 18:55
粤爱好者何万程(1785***) 11:28:41
设t=sqrt(m)+sqrt(n),则
sqrt(m)=t-sqrt(n),
m=t^2+n-2tsqrt(n),
sqrt(n)=(t^2+n-m)/(2t),
即n是有理数的完全平方,m类似

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2014-8-26 22:33
回复 6# kuing


    这方法适用于三次根式也

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2014-8-27 23:47
另外一种说理方式

当$m,n,\sqrt m+\sqrt n$为有理数时,则
\[\sqrt m-\sqrt n=\dfrac {m-n}{\sqrt m+\sqrt n}\]
亦是有理数,从而
\[\sqrt m=\frac 12 ((\sqrt m-\sqrt n)+(\sqrt m+\sqrt n))\]
也是有理数,……

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-8-28 00:18
回复 8# isee

这个证法好玩儿

Mobile version|Discuz Math Forum

2025-6-6 08:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit