Forgot password?
 Create new account
View 2177|Reply 8

[数论] 若$m,n$为两个不同的正整数,则$\sqrt m +\sqrt n$为有理数?

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-8-23 00:11:25 |Read mode
若$m,n$为两个不同的正整数,那么什么情况下$\sqrt m +\sqrt n$为有理数?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-8-23 00:12:39
这……除了都是完全平方数的情形外还会有其他……?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-8-23 00:39:20
回复 2# kuing

具体理由呢?结论好猜,怎么说理呢?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-8-23 00:42:06
不会

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-8-23 01:15:47
搞个多元推广,线性无关什么的……?

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-8-23 18:55:23
粤爱好者何万程(1785***) 11:28:41
设t=sqrt(m)+sqrt(n),则
sqrt(m)=t-sqrt(n),
m=t^2+n-2tsqrt(n),
sqrt(n)=(t^2+n-m)/(2t),
即n是有理数的完全平方,m类似

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-8-26 22:33:52
回复 6# kuing


    这方法适用于三次根式也

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-8-27 23:47:44
另外一种说理方式

当$m,n,\sqrt m+\sqrt n$为有理数时,则
\[\sqrt m-\sqrt n=\dfrac {m-n}{\sqrt m+\sqrt n}\]
亦是有理数,从而
\[\sqrt m=\frac 12 ((\sqrt m-\sqrt n)+(\sqrt m+\sqrt n))\]
也是有理数,……

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-8-28 00:18:16
回复 8# isee

这个证法好玩儿

手机版Mobile version|Leisure Math Forum

2025-4-22 06:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list