Forgot password?
 Register account
View 1499|Reply 9

又让我见到一个,数学惟熟耳的例子

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-8-26 22:47 |Read mode
试卷范围本为初中范围,题如下:

下四个选项中,不能整除$3^{2005}+6^{2005}+9^{2005}$的是 (      ): A.2  B.3   C.5  D.6

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-8-27 23:39
太简单了,没人理么

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-8-28 00:18
回复 2# isee

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-8-28 09:51
回复 1# isee

出题人的意图:

\[3^{2005}+6^{2005}+9^{2005}=3^{2005}(1+2^{2005}+3^{2005})\]

奇数乘偶数,6的倍数。

但这里也涉及到幂的尾数问题。


因此,如果直接考察尾数即:3+6+9,尾数是8,则即能被2整数,又能被3整除。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-8-28 09:56
另外,如果用二项式展开,更明显了

\[3^{2005}+6^{2005}+9^{2005}=(6-3)^{2005}+6^{2005}+(6+3)^{2005}\]

熟悉二项式展开的,都无需向下写了。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-8-29 20:33
单项选择的话,就只有5了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-8-29 20:34
回复 6# realnumber

嗯,3显然整除,奇偶分析2也显然整除,故6也整除……

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-8-29 23:52
我的意思是就看答案,如果A那么D也符合,
如果B,那么D也符合
如果D,那么AB至少有一个符合。所以只能选C了


假定表达式没印刷清楚或过于复杂

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-8-29 23:57
回复 8# realnumber

牛比……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-8-30 11:44
回复 9# kuing


    逻辑呀

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit