Forgot password?
 Register account
View 2186|Reply 3

[不等式] 2014江西竞赛

[Copy link]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-8-27 21:31 |Read mode
Last edited by wzxsjz 2014-8-27 21:48请帮忙
设$a_1,a_2,\cdots,a_n$均为正实数,$n\in N_+$,证明:
\[\sum_{k=1}^{n}\frac{k^2}{a_1+a_2+\cdots+a_k}<4 \sum_{k=1}^{n}\frac{k}{a_k}\]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-8-29 11:46
Last edited by realnumber 2014-9-23 15:47重写下
由cauchy不等式
\[(1+2+3+\cdots+k)^2\le (a_1+a_2+\cdots+a_k)(\frac{1}{a_1}+\frac{2^2}{a_2}+\cdots+\frac{k^2}{a_k})\]
等价变形为
\[\frac{k^2}{a_1+a_2+\cdots+a_k}\le\frac{4}{(k+1)^2}(\frac{1}{a_1}+\frac{2^2}{a_2}+\cdots+\frac{k^2}{a_k})\]
这样$\frac{4}{a_1}$的系数是$\frac{1}{4}+\frac{1}{9}+...\frac{1}{(n+1)^2}\le 1$倒数平方的和这样放缩$\frac{1}{i^2}<\frac{1}{(i-1)i}$.
其它$\frac{4}{a_i}$的系数也一样。但愿草稿纸上没写错。
以前在k12解过类似的。没找到。
就这个了
blog.sina.com.cn/s/blog_b7abba5a010178ws.html

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-8-8 19:55
realnumber 发表于 2014-8-29 11:46
以前在k12解过类似的。没找到。
就这个了
blog.sina.com.cn/s/blog_b7abba5a010178ws.html
系统维护中,博文仅作者可见。登陆后可查看本人文章。😥

Comment

密码都忘掉了  Posted 2023-9-6 07:21

Mobile version|Discuz Math Forum

2025-5-31 10:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit