Forgot password
 Register account
View 1103|Reply 6

若$a+b+c+d+e+f=0,\cdots$,证等式成立

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-9-7 16:38 |Read mode
若$a+b+c+d+e+f=0$且$ a^3+b^3+c^3+d^3+e^3+f^3=0$.
证明:$(a+c)(a+d)(a+e)(a+f)=(b+c)(b+d)(b+e)(b+f)$.

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-9-7 22:08
以a,b表示c,d,e,f的对称多项式

$(a^4-b^4)+a_1(a^3-b^3)+a_2(a^2-b^2)+a_3(a-b)$

$\displaystyle =(a^4-b^4)+(-a-b)(a^3-b^3)+[\frac{1}{2}(-a-b)^2-\frac{1}{2}s_2](a^2-b^2)+[\frac{1}{6}(-a-b)^3-\frac{1}{2}(-a-b)s_2+\frac{1}{3}(-a^3-b^3)](a-b)$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-13 10:43
回复 2# tommywong


    这个式子怎么理解?

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-9-13 11:48
等于0,逆向证毕啊

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-9-13 12:17
$\displaystyle a_{n-m}=\sum_{r_i=0}^{\lfloor \frac{m}{i} \rfloor} \prod_{i=1}^m \frac{(-s_i)^{r_i}}{i^{r_i} r_i !}$这个知道吗?

zh.wikipedia.org/wiki/對稱多項式

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-13 15:22
若$a+b+c+d+e+f=0$且$ a^3+b^3+c^3+d^3+e^3+f^3=0$.
证明:$(a+c)(a+d)(a+e)(a+f)=(b+c)(b+d)(b+e)(b+f)$. ...
isee 发表于 2014-9-7 16:38
构造函数$G(x)=(x+c)(x+d)(x+e)(x+f)$,去证明$G(a)=G(b)$,然后,……,没然后了,

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-13 16:50
构造函数$G(x)=(x+c)(x+d)(x+e)(x+f)$,去证明$G(a)=G(b)$,然后,……,没然后了,
其妙 发表于 2014-9-13 15:22

    具体?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:08 GMT+8

Powered by Discuz!

Processed in 0.012557 seconds, 22 queries