Forgot password?
 Register account
View 2566|Reply 13

[数论] 实数$7^{9999}$的最后三位数字是什么?

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-9-7 17:08 |Read mode
RT

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-9-7 17:31
Last edited by tommywong 2015-5-16 16:01$7^{9999} \equiv (-1)^{9999} \equiv -1 (mod2^3)$

$\displaystyle x^{15+4n} \equiv \sum_{i=1}^3 (-1)^{i-1} C_{n+i-1}^{i-1} C_{n+3}^{3-i} x^{15-4i} (mod5^3)$

$7^{9999} \equiv C_{2499}^2 7^{11}-C_{2497}^1 C_{2499}^1 7^7+C_{2498}^2 7^3 \equiv 7^{11}-3\times 7^7+3\times 7^3 \equiv 18(mod5^3)$

$7^{9999} \equiv 8\times 47\times 18+3\times 125 \equiv 143(mod10^3)$

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-9-7 19:38
等价于$7^{9999}$除以$1000$的余数是多少。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-9-7 19:40
回复 3# 乌贼

能不能再废话点……

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-9-7 19:45
回复 4# kuing

,主要是二楼的太高端看不懂……

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-9-7 19:55
那个公式在这里:forum.php?mod=viewthread&tid=2811&extra=page=6

用$7^{10} \equiv -1(mod5^3)$也可以,但我喜欢这样做

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-9-18 15:25
Last edited by isee 2014-9-18 18:45tommywong 结果是完全正确的。

这里再重复 tommywong 的方式,给一个容易看明白的过程(转载):
先试下,$7^2=49$,$7^3=343$,$7^4=2401=24\times 100+1$,于是(主要用二项式定理展开):

\begin{align*}
7^{9999}&=7^3\times 7^{9996}\\
&=343\times (7^4)^{2499}\\
&=343\times 2401^{2499}\\
&=343\times (1+2400)^{2499}\\
&\equiv 343\times (1+2499\times2400)\pmod {1000}\\
&=343\times [1+(2500-1)\times2400]\\
&\equiv 343\times (1-2400)\pmod {1000}\\
&\equiv 343\times 601 \pmod {1000}\\
&\equiv 143 \pmod {1000}
\end{align*}

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-9-18 15:32
回复 7# isee

(mod 1000)  ->  \pmod{1000}

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-9-20 16:23
回复  isee

(mod 1000)  ->  \pmod{1000}
kuing 发表于 2014-9-18 15:32
精益求精!

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-9-22 15:09
回复 5# 乌贼
孙子定理  可问度娘

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-9-22 16:25
回复 10# realnumber
孙子定理

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted 2014-12-10 13:49
暴力一点
$7^4=2401\equiv 401\pmod{1000}$
$7^{9999}=7^{4\times2499+3}\equiv 401^{2499}\times7^3=(400+1)^{2499}\times7^3\equiv (2499\times{400}+1)\times7^3\equiv (1-400)\times7^3=(49-400\times49)\times7\equiv 449\times7=3143\equiv 143\pmod{1000}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-10 13:51
回复 12# 零定义

擦,好久没见

4

Threads

57

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted 2014-12-10 14:19
回复 13# kuing
呵呵~确实好久不见了~

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit