Forgot password?
 Register account
View 2008|Reply 4

[函数] 2014浙江

[Copy link]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-9-10 12:13 |Read mode
Last edited by wzxsjz 2014-9-10 12:21解方程:$x\in [0,2\pi)$
$$\prod_{k=1}^{n}sin(kx)+\prod_{k=1}^{n}cos(kx)=1$$

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-9-11 04:41
$n=1$就不说了
$n=2$时
\[\sin(x)\sin(2x)+\cos(x)\cos(2x)=\cos(x)=1, x=0\]
$n>2$时
\[\prod_{k=1}^n\sin(kx)+\prod_{k=1}^n\cos(kx)\le \abs{\prod_{k=1}^n\sin(kx)}+\abs{\prod_{k=1}^n\cos(kx)}\]
\[\le \abs{\sin(x)\sin(2x)}+\abs{\cos(x)\cos(2x)}\]
易证$\abs{\sin(x)\sin(2x)}+\abs{\cos(x)\cos(2x)}\le 1$且等号成立时有$x=0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}$

因此当$\prod_{k=1}^n\sin(kx)+\prod_{k=1}^n\cos(kx)=1$时必然有
\[\prod_{k=1}^n\sin(kx)+\prod_{k=1}^n\cos(kx)=\abs{\sin(x)\sin(2x)}+\abs{\cos(x)\cos(2x)}=1\]

于是可能的取值只有上面所说的几个,可以一个一个试
显然$x=0$是肯定可以的
而当$n>2$时,易证$\prod_{k=1}^n\sin(k(\frac{p\pi}{3}))=0, p=1,2,3,4,5$
因此要求$\prod_{k=1}^n\cos(kx)=1$,仅当$x=\pi, n \mod 4=3,0 $时成立

所以总体来说,就是当$n \mod 4=3,0$时,有两解$x=0, x=\pi$,其他时候只有一解$x=0$

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-9-11 12:39
谢谢!我一有难事,巡就出手相助!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-9-13 09:22
谢谢!我一有难事,巡就出手相助!
wzxsjz 发表于 2014-9-11 12:39
巡版战无不克,攻无不胜!
这里也有:blog.sina.com.cn/s/blog_54df069f0102uyc1.html(见文末哟!)

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

 Author| wzxsjz Posted 2014-9-14 13:09
回复 4# 其妙


谢谢相助!

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit