Forgot password
 Register account
View 1958|Reply 6

[数论] 又是2014希望杯初一精英

[Copy link]

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-9-14 13:29 |Read mode
从$1$到$2014$中选出$n$个两两互质的非素数,则$n$的最大值是_____



我的答案$17$,对吗?

21

Threads

67

Posts

0

Reputation

Show all posts

original poster wzxsjz posted 2014-9-17 19:20
大家:请帮帮忙

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-9-23 15:03
没头绪,你怎么得到17个的?

我才14个,如下
$1,2^2,3^2,5^2,7^2,11^2,13^2,17^2,23^2,29^2,31^2,37^2,41^2,43^2$

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-9-23 15:40
先不考虑1,按所含因数中最小质数从小到大排列,2,3,4,7,...,43,最多共13个
第14个,含质数最小是47,与大于等于47的乘积,则超过2014,不合要求。
---好象可以这样推理。
14个也可以这样
$1,2^3,3\times47,5^4,.....$

21

Threads

67

Posts

0

Reputation

Show all posts

original poster wzxsjz posted 2014-9-23 18:28
Last edited by wzxsjz 2014-9-23 18:35回复 4# realnumber
$ 我就是这样,不过数错了,你也落了一个19^2 ,谢谢!$

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2014-9-24 10:31
含1的话,答案应该是15个。

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2014-9-24 10:31
含1的话,答案应该是15个。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:06 GMT+8

Powered by Discuz!

Processed in 0.012964 seconds, 23 queries