Forgot password
 Register account
View 2439|Reply 8

[不等式] 证明:$\cos (\sin x)>\sin (\cos x)$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-9-16 20:06 |Read mode
证明:对所有实数$x$(弧度),有$\cos (\sin x)>\sin (\cos x)$.

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-9-17 18:41
Last edited by wzxsjz 2014-9-17 18:47$\sin x+\cos x\leqslant \sqrt2<\frac{\pi}{2}$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-18 15:10
回复 2# wzxsjz


    然后呢?

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-9-18 20:08
Last edited by wzxsjz 2014-9-18 20:26分象限讨论即可

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-9-18 20:11
回复 4# wzxsjz


    如果有“闲”,写出来学习一下。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-20 16:22
回复 5# isee
$\cos (\sin x)>\sin (\cos x)\Longleftrightarrow \cos (\sin x)>\cos (\dfrac{\pi}2-\cos x)\Longleftrightarrow \sin x<\dfrac{\pi}2-\cos x\Longleftrightarrow \sin x+\cos x<\dfrac{\pi}2$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-20 16:23
回复 6# 其妙

第二个 \iff 不 f 吧

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-9-21 18:34
Last edited by wzxsjz 2014-9-21 19:42只需证明对所有满足$ -\frac{\pi}{2} \le x\le\frac{3\pi}{2}的实数x$,有$\cos(\sin x)>\sin(\cosx)
当$0 \le x\le\frac{\pi}{2}$时,$\sin x+\cos x<\frac{\pi}{2}$,得出$\cos(\sin x)>\sin(\cos x)
当$-\frac{\pi}{2}\le x\le0$时,$ 0 \le -x\le\frac{\pi}{2}$,根据上述得出$\cos[\sin(-x)]>\sin[\cos(-x)]$,即$\cos(\sin x)>\sin(\cos x)$
到此已经证明,当$ -\frac{\pi}{2}\le x\le\frac{\pi}{2}$时,有$\cos(\sin x)>\sin(\cos x)$
当$ \frac{\pi}{2}\le x\le\frac{3\pi}{2}$时,$ -\frac{\pi}{2}< -1\le\sin x\le1<\frac{\pi}{2}$,$\cos(\sin x)>0,$
$-\frac{\pi}{2}<-1\le\cos x\le0,\sin(\cos x)\le0$,得出$\cos(\sin x)>\sin(\cos x)$
打字慢,回复得太晚,失敬!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-21 22:35
回复 8# wzxsjz

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:40 GMT+8

Powered by Discuz!

Processed in 0.013246 seconds, 25 queries