Forgot password?
 Register account
View 2427|Reply 8

[不等式] 证明:$\cos (\sin x)>\sin (\cos x)$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-9-16 20:06 |Read mode
证明:对所有实数$x$(弧度),有$\cos (\sin x)>\sin (\cos x)$.

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-9-17 18:41
Last edited by wzxsjz 2014-9-17 18:47$\sin x+\cos x\leqslant \sqrt2<\frac{\pi}{2}$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-9-18 15:10
回复 2# wzxsjz


    然后呢?

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-9-18 20:08
Last edited by wzxsjz 2014-9-18 20:26分象限讨论即可

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-9-18 20:11
回复 4# wzxsjz


    如果有“闲”,写出来学习一下。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-9-20 16:22
回复 5# isee
$\cos (\sin x)>\sin (\cos x)\Longleftrightarrow \cos (\sin x)>\cos (\dfrac{\pi}2-\cos x)\Longleftrightarrow \sin x<\dfrac{\pi}2-\cos x\Longleftrightarrow \sin x+\cos x<\dfrac{\pi}2$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-9-20 16:23
回复 6# 其妙

第二个 \iff 不 f 吧

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-9-21 18:34
Last edited by wzxsjz 2014-9-21 19:42只需证明对所有满足$ -\frac{\pi}{2} \le x\le\frac{3\pi}{2}的实数x $,有cos(sinx)>sin(cosx)
当$ 0 \le x\le\frac{\pi}{2}$时,$ sinx+cosx<\frac{\pi}{2}$,得出cos(sinx)>sin(cosx)
当$ -\frac{\pi}{2}\le x\le0$时,$ 0 \le -x\le\frac{\pi}{2}$,根据上述得出cos[sin(-x)]>sin[cos(-x)},即cos(sinx)>sin(cosx)
到此已经证明,当$ -\frac{\pi}{2}\le x\le\frac{\pi}{2}$时,有cos(sinx)>sin(cosx)
当$ \frac{\pi}{2}\le x\le\frac{3\pi}{2}$时,$ -\frac{\pi}{2}< -1\le sinx\le1<\frac{\pi}{2}$,$cos(sinx)>0,$
$-\frac{\pi}{2}<-1\le cosx\le0,sin(cosx)\le0$,得出cos(sinx)>sin(cosx)
打字慢,回复得太晚,失敬!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-9-21 22:35
回复 8# wzxsjz

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit