|
Last edited by wzxsjz 2014-9-21 19:42只需证明对所有满足$ -\frac{\pi}{2} \le x\le\frac{3\pi}{2}的实数x$,有$\cos(\sin x)>\sin(\cosx)
当$0 \le x\le\frac{\pi}{2}$时,$\sin x+\cos x<\frac{\pi}{2}$,得出$\cos(\sin x)>\sin(\cos x)
当$-\frac{\pi}{2}\le x\le0$时,$ 0 \le -x\le\frac{\pi}{2}$,根据上述得出$\cos[\sin(-x)]>\sin[\cos(-x)]$,即$\cos(\sin x)>\sin(\cos x)$
到此已经证明,当$ -\frac{\pi}{2}\le x\le\frac{\pi}{2}$时,有$\cos(\sin x)>\sin(\cos x)$
当$ \frac{\pi}{2}\le x\le\frac{3\pi}{2}$时,$ -\frac{\pi}{2}< -1\le\sin x\le1<\frac{\pi}{2}$,$\cos(\sin x)>0,$
$-\frac{\pi}{2}<-1\le\cos x\le0,\sin(\cos x)\le0$,得出$\cos(\sin x)>\sin(\cos x)$
打字慢,回复得太晚,失敬! |
|