Forgot password
 Register account
View 3104|Reply 12

[数论] 证明:$m$正有理数,若$m+\frac 1m$为整数,则$m=1$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-9-17 14:39 |Read mode
证明:若$m$是正有理数,那么$m+\frac 1m$为整数的充分必要条件是$m=1$。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-17 14:46
设 $m+1/m=k\in\Bbb N^+$,解得 $m=\bigl(k\pm\sqrt{k^2-4}\bigr)/2$,故必有 $k^2-4=p^2$,其中 $p\in\Bbb N$,则 $(k-p)(k+p)=4$,……

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-9-24 07:29
Last edited by realnumber 2014-9-26 15:46若m≠1,设$m=\frac{q}{p},(p,q)=1,p,q为正整数,至少一个大于1$,
则$m+\frac{1}{m}=\frac{p^2+q^2}{pq},而(p^2+q^2,pq)=((p-q)^2,pq)$
而$(\abs{p-q},pq)=1,$即$m+\frac{1}{m}$不是整数,矛盾.

修改了下

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-25 21:33
回复 3# realnumber

高大上的证法表示没看懂……

0

Threads

3

Posts

0

Reputation

Show all posts

hsq posted 2014-9-26 13:06
回复 4# kuing

有理数就是可以写成两个整数之比的数。。。故可那样设。。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-26 13:09
回复 5# hsq

设的地方我懂,没懂的是最大公约数的变化那里……

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-9-26 15:47
回复 4# kuing


    修改了下,这下好点了没,以前有错误

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-26 16:06
回复 7# realnumber

$(\abs{p-q},pq)=1$ 是咋证的

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-9-29 11:52
回复 8# kuing


    已知条件有(p,q)=1,
不妨设p>q,则(p-q,p)=1,且(p-q,q)=1,自然有(p-q,pq)=1

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-29 12:56
回复 9# realnumber

大约似乎应该差不多基本上可能大致上几乎懂了……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-30 23:09
回复 10# kuing

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2014-10-2 14:28
回复  realnumber

$(\abs{p-q},pq)=1$ 是咋证的
kuing 发表于 2014-9-26 16:06
这个真的很数论了,就

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-2 15:14
回复 12# isee

所以我就反应不过来了……数论渣渣

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:23 GMT+8

Powered by Discuz!

Processed in 0.012667 seconds, 23 queries