Forgot password
 Register account
View 1207|Reply 3

不定方程

[Copy link]

48

Threads

77

Posts

0

Reputation

Show all posts

longzaifei posted 2014-9-26 15:18 |Read mode
方程$ x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=24$的全部整数解$(x,y,x)$的集合是_____________

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2014-9-26 15:47
应该是空集吧!!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-26 15:58
海伦公式
\[S=\sqrt{p(p-a)(p-b)(p-c)}=\frac{\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a+b)}}4,\]
秦九韶公式
\[S=\sqrt{\frac14\left( a^2c^2 - \left( \frac{a^2+c^2-b^2}2 \right)^2 \right)}=\frac{\sqrt{2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4}}4,\]
所以实际上有因式分解
\[2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4=(a+b+c)(a+b-c)(b+c-a)(c+a+b),\]
故此原题有
\[(x+y+z)(x+y-z)(y+z-x)(z+x-y)=-24=-2^3\times3,\]
而注意到左边各因式的奇偶性相同,所以各因式只能都为偶数且非零,而右边 $2$ 的次数只有 $3$,矛盾,即无解。

48

Threads

77

Posts

0

Reputation

Show all posts

original poster longzaifei posted 2014-9-27 14:31
谢谢kuing!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:24 GMT+8

Powered by Discuz!

Processed in 0.013118 seconds, 22 queries