Forgot password
 Register account
View 2694|Reply 6

[函数] 两道三角函数试题

[Copy link]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-10-3 09:27 |Read mode
Last edited by hbghlyj 2025-6-22 20:521.己知 $\sin \theta(1-\sin \theta)=\left(\cos 10^{\circ}-\frac{\sqrt{3}}{2}\right)\left[\frac{\sqrt{3}}{2}+\sin \left(\theta+10^{\circ}\right)\right]$其中 $\theta \in\left(0^{\circ}, 70^{\circ}\right)$ 求 $\theta$ 的度数。

2.己知 $\alpha, \beta$ 为锐角且 $x \cdot\left(\alpha+\beta-\frac{\pi}{2}\right)>0$ 求证: $\left(\frac{\cos \alpha}{\sin \beta}\right)^x+\left(\frac{\cos \beta}{\sin \alpha}\right)^x<2$.

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2014-10-3 15:08
回复 3# Tesla35
题库。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-11-4 23:19
回复 1# 其妙

第一题有什么背景么?
利用软件,观察到除了有一个解是 $10\du$ 以外,还有另一个比 $46\du$ 稍大一点点的解。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-11-5 00:10
由和差化积有
\begin{align*}
(\cos10\du-\cos30\du)(\cos30\du+\cos70\du)
&=2\sin10\du\sin20\du\cdot2\cos20\du\cos50\du\\
&=2\sin10\du\sin^240\du\\
&=\sin10\du(1-\cos80\du),
\end{align*}
可见 $\theta=10\du$ 是其中一个解。

用软件画图,有
QQ截图20141105000749.gif
左边的零点上面已经证实了是 $10\du$,而右边的零点虽然看上去像是 $46\du$,但代入后发现:
QQ截图20141105000959.gif
是个很小的正数,可见实际上右边的零点比 $46\du$ 要大一点点。

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2014-11-9 23:17
是一个学生网友自编 的题目

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-11-9 23:22
回复 9# 其妙

我感觉有可能是从平面几何题而来的,你看能不能问清楚

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2014-11-9 23:30
回复 10# kuing
那网友是谁都不知道了,一个多月了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:54 GMT+8

Powered by Discuz!

Processed in 0.013953 seconds, 26 queries