|
Author |
kuing
Post time 2015-2-15 03:08
这两天不知是不是大家都顾着泡妞去了,论坛好冷清哟,看来还是找点旧贴来撸撸,打破零贴子喔。
这个不等式链,头尾都是非常简单的,首先看最左边的,
由于序列
\[\{xy,yz,zx\}\]
与
\[\left\{ \frac1{x^2+y^2+2z^2},\frac1{y^2+z^2+2x^2},\frac1{z^2+x^2+2y^2} \right\}\]
显然必为同序,故由排序不等式即得
\[\sum\frac{yz}{x^2+y^2+2z^2}\leqslant \sum\frac{xy}{x^2+y^2+2z^2};\]
再看最右边的,由柯西不等式即得
\[\sum\frac{\frac14(x+y)^2}{x^2+y^2+2z^2}\leqslant\frac14\sum\left(\frac{x^2}{z^2+x^2}+\frac{y^2}{y^2+z^2}\right)=\frac34;\]
第二个不等式也不难,由
\begin{align*}
\sum\frac{2z^2-2xy}{x^2+y^2+2z^2}
&=\sum\frac{(z-x)(z+y)+(z+x)(z-y)}{x^2+y^2+2z^2} \\
& =\sum\left( \frac{(z-x)(z+y)}{x^2+y^2+2z^2}+\frac{(x+y)(x-z)}{y^2+z^2+2x^2} \right) \\
& =\sum\frac{(z-x)^2(x^2+y^2+z^2-xy-yz-zx)}{(x^2+y^2+2z^2)(y^2+z^2+2x^2)},
\end{align*}
即得
\[\sum\frac{xy}{x^2+y^2+2z^2}\leqslant \sum\frac{z^2}{x^2+y^2+2z^2};\]
而第三个不等式就有点麻烦,由
\begin{align*}
\sum\frac{(x+y)^2-4z^2}{x^2+y^2+2z^2}
& =\sum\frac{(x+y+2z)(x-z+y-z)}{x^2+y^2+2z^2} \\
& =\sum\left( \frac{(x+y+2z)(x-z)}{x^2+y^2+2z^2}+\frac{(y+z+2x)(z-x)}{y^2+z^2+2x^2} \right) \\
& =\sum\frac{(z-x)^2(3zx+xy+yz-y^2)}{(x^2+y^2+2z^2)(y^2+z^2+2x^2)},
\end{align*}
可见
\[\sum\frac{z^2}{x^2+y^2+2z^2}\leqslant \sum\frac{\frac14(x+y)^2}{x^2+y^2+2z^2} \iff \sum(z-x)^2(3zx+xy+yz-y^2)(z^2+x^2+2y^2)\geqslant 0,\]
下面证明比上式更强的
\[S_x(y-z)^2+S_y(z-x)^2+S_z(x-y)^2\geqslant 0,\]
其中 $S_x=x(y+z-x)(2x^2+y^2+z^2)$, $S_y=y(z+x-y)(x^2+2y^2+z^2)$, $S_z=z(x+y-z)(x^2+y^2+2z^2)$,由对称性,不妨设 $x\geqslant y\geqslant z$,则显然 $S_y\geqslant 0$, $S_z\geqslant 0$,由 SOS 方法可知,此时只需证
\[x^2S_y+y^2S_x\geqslant 0,\]
代入等价于
\[x(z+x-y)(x^2+2y^2+z^2)+y(y+z-x)(2x^2+y^2+z^2)\geqslant 0,\]
只需证
\[x(x-y)(x^2+2y^2+z^2)+y(y-x)(2x^2+y^2+z^2)\geqslant 0,\]
即
\[(x-y)^2(x^2+y^2+z^2-xy)\geqslant 0,\]
显然成立。
综上,原不等式链得证。 |
|