Forgot password
 Register account
View 2455|Reply 2

[不等式] 来自人教群的一道三元轮换分式不等式

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-7 17:55 |Read mode
爱好者爱因斯坦(5747*****)  16:17:13
QQ图片20141007174855.jpg
题目:设 $x$, $y$, $z$ 是满足 $x+y+z=1$ 的正实数,求证
\[\frac{z(x+1-zx)}y+\frac{x(y+1-xy)}z+\frac{y(z+1-yz)}x\geqslant \frac{11}3.\]

先证明当 $x+y<1$ 时有
\[\frac{y+1-xy}{1-x-y}\geqslant 10x+13y-4,\]
事实上
\[y+1-xy-(10x+13y-4)(1-x-y)=\frac1{13}(3x-1)^2+\frac1{13}(11x+13y-8)^2,\]
所以
\begin{align*}
\sum\frac{x(y+1-xy)}z&=\sum\frac{x(y+1-xy)}{1-x-y} \\
& \geqslant \sum x(10x+13y-4) \\
& =10\sum x^2+13\sum xy-4\sum x \\
& =\frac72\sum x^2+\frac{13}2\left( \sum x \right)^2-4\sum x \\
& \geqslant \frac76\left( \sum x \right)^2+\frac{13}2\left( \sum x \right)^2-4\sum x \\
& =\frac{11}3.
\end{align*}


这题用来作切平面方法和拉格朗日配方的范例挺好……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-10-7 22:01

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-10-7 22:15
话说,原题抄漏了一个z

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:59 GMT+8

Powered by Discuz!

Processed in 0.012549 seconds, 25 queries