Forgot password
 Register account
View 3038|Reply 11

[几何] 求两个几何等式的向量证法

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2014-10-8 17:54 |Read mode
$\triangle ABC$中$O,I,H$分别是外心、内心、垂心,$R,r$分别是外接圆、内切圆半径,$\rho$是垂足$\triangle DEF$的内切圆半径,求证
1:$IH^2=2r^2-2R\rho$
2:$OH^2=R^2-4R\rho$
看到了几何证法,有没有简单一点的向量证法

21

Threads

67

Posts

0

Reputation

Show all posts

wzxsjz posted 2014-10-22 18:48
ht
花体
滑梯
好题

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-10-25 23:36
,心距公式,

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-26 00:09
几何证法可以分享一下不?

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-10-27 15:19
回复 4# kuing
1.jpg 2.jpg 3.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-27 15:20
回复 5# abababa

thanks!

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-10-27 15:23
回复 4# kuing
4.jpg
显然$CEHD$共圆,所以$\angle HCE = \angle HDP$,而$\angle HEC = \angle HPD = 90^\circ$,所以$\triangle HCE \sim \triangle HDP$
于是$\frac{HE}{HC} = \frac{HP}{HD}$,即$\frac{HA \cos C}{HC} = \frac{\rho}{HD}$,所以$HA \cdot HD = \frac{\rho HC}{\cos C}$
由圆幂,$OH^2 = R^2-HA \cdot HT = R^2-HA \cdot 2HD = R^2-2\rho\frac{HC}{\cos C}$
由于$BC \cos C = CE = HC \cos\angle HCE = HC \sin A$,所以$2R \sin A \cos C = HC \sin A$,即$\frac{HC}{\cos C} = 2R$
所以$OH^2 = R^2-4R\rho$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-27 15:26
话说,这些都有没有“锐角三角形”的限制啊?

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-10-27 15:28
帮助解答的网友只画了草图,有些字母也没标,我试着根据他的证明和草图画了图,不知道有没有标错的地方。
而且第一个$IH^2$的证明还是觉得很麻烦,总感觉有简单的证明方法。

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-10-27 15:32
回复 8# kuing
三角形的形状没有限制。应该是都能算才对,这些都是三角形重要的几个心。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-10-27 15:37
回复 10# abababa

那证明是不是也应该分个类,钝角的时候有的式子似乎要改改

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-10-27 15:44
回复 11# kuing
$IH^2$的证明别说钝角三角形,就这个我看着就有点晕了,后一个$OH^2$的还行。我想如果有向量方法就方便了,这也是发这一帖的初衷。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:07 GMT+8

Powered by Discuz!

Processed in 0.014182 seconds, 25 queries