Forgot password?
 Register account
View 1729|Reply 2

[数论] $f(\varphi(n))=\varphi(f(n))$ 求解

[Copy link]

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

琉璃幻 Posted 2014-10-17 10:21 |Read mode
设 $f(n)$ 是因数个数函数
求所有 $n$ 使得 $f(\varphi(n))=\varphi(f(n))$,并且 $n$ 只有两个不同的素因数 ($n=p^aq^b$)
其中 $\varphi(n)$ 是欧拉函数

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-5-5 19:20

$3\cdot2^{2^m-1}$都符合条件

A078148                 Numbers n such that d(phi(n)) = phi(d(n))
$2^m$ is in the sequence iff $m=0$ or $m+1$ is prime (the proof is easy).
All numbers of the form $3\cdot2^{2^m-1}$ are in the sequence because\begin{align*}&d(\phi(3\cdot2^{2^m-1}))-\phi(d(3\cdot2^{2^m-1}))\\&=d(2\cdot2^{2^m-2})-\phi(2\cdot2^m)\\&=d(2^{2^m-1})-\phi(2^{m+1})\\&=2^m-2^m\\&=0\end{align*}So this sequence is infinite.
其中只有两个不同的素因数且$<10000$的数为$6, 24, 36, 384, 1296, 2304$
  1. In[]:= Select[Range[10000],Function[n,EulerPhi[DivisorSigma[0,n]]==DivisorSigma[0,EulerPhi[n]]&&n∈PositiveIntegers&&PrimeNu[n]==2]]
  2. Out[]= {6,24,36,384,1296,2304}
Copy the Code

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-5-5 19:24
琉璃幻 发表于 2014-10-17 03:21
求所有 $n$ 使得 $f(\varphi(n))=\varphi(f(n))$,并且 $n$ 只有两个不同的素因数 ($n=p^aq^b$)
$f(\varphi(n))=f\Bigl((p-1)p^{a-1}(q-1)q^{b-1}\Bigr)$
$\varphi(f(n))=\varphi\Bigl((a+1)(b+1)\Bigr)$
然後怎麼辦

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit