|
$3\cdot2^{2^m-1}$都符合条件
A078148 Numbers n such that d(phi(n)) = phi(d(n))
$2^m$ is in the sequence iff $m=0$ or $m+1$ is prime (the proof is easy).
All numbers of the form $3\cdot2^{2^m-1}$ are in the sequence because\begin{align*}&d(\phi(3\cdot2^{2^m-1}))-\phi(d(3\cdot2^{2^m-1}))\\&=d(2\cdot2^{2^m-2})-\phi(2\cdot2^m)\\&=d(2^{2^m-1})-\phi(2^{m+1})\\&=2^m-2^m\\&=0\end{align*}So this sequence is infinite. 其中只有两个不同的素因数且$<10000$的数为$6, 24, 36, 384, 1296, 2304$
- In[]:= Select[Range[10000],Function[n,EulerPhi[DivisorSigma[0,n]]==DivisorSigma[0,EulerPhi[n]]&&n∈PositiveIntegers&&PrimeNu[n]==2]]
- Out[]= {6,24,36,384,1296,2304}
Copy the Code |
|