|
Author |
乌贼
Posted 2019-5-23 01:34
Last edited by 乌贼 2019-5-23 01:48
延长$ DC $至$ M $,使$ BD=DM $,作等腰直角$ \triangle BFE,\angle BFE=90\du $,$ N $为$ BD $与$ CE $交点。有$ BECM $四点共圆,又$ DE\px BC $,所以\[ \angle ECD=\angle MBE\\\angle CED=\angle ECB=\angle BME \]得\[ \triangle EDC\sim \triangle MEB\riff \dfrac{\sqrt{2}BF}{CD}=\dfrac{BE}{CD}=\dfrac{BM}{CE}=\dfrac{\sqrt{2}BD}{CE}=2\sqrt{2}\riff BF=2CD \]由\[ \triangle BFN\sim \triangle CDN\riff BN=2CN,FN=2DN \\\triangle EDN\sim \angle CBN\riff EN=\dfrac{1}{2}DN=\dfrac{1}{4}FN=\dfrac{1}{3}FE\]直角$ \triangle BFN $中\[ BN=5EN\riff CD=\dfrac{3}{2}EN,BD=7EN\\\riff BC=\dfrac{\sqrt{205}}{2}EN\riff DE=\dfrac{\sqrt{205}}{5}EN\\\riff\dfrac{AD}{CD}=\dfrac{DE}{BC-DE}=\dfrac{2}{3}\riff AD=EN\\\riff CE=\dfrac{7}{2}EN=AD+AC\] |
|