Forgot password?
 Register account
View 2645|Reply 2

[几何] 来自人教群之几何题

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-10-28 01:17 |Read mode
锐角$\triangle ABC$中,$BD$是$AC$边上的高,$E$是$AB$上的一点,满足$\angle AEC=45^\circ,BD=2CE$,且$DE//BC$。求证:$CE=AD+AC$。
211.png

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2014-10-31 14:43
人教论坛45度角多条件几何题辅助线.jpg
梅内 (AB:BE)(EF:FC)(CD:DA)=1
平行 AB:BE=AC:CD
所以 AD:AC=EF:FC
合比 AD:(AD+AC)=EF:(EF+FC)
发现需证 AD=EF(或AC=CF)

这个跟BC没什么关系了(当然要知道FD=2EF,AF平分ED)
过F作FG垂直EF,过A作AH垂直EC。FG//AH
考虑到ADHF四点共圆,所以……(后面突然想不明白了,窘)

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2019-5-23 01:34
Last edited by 乌贼 2019-5-23 01:48 211.png
延长$ DC $至$ M $,使$ BD=DM $,作等腰直角$ \triangle BFE,\angle BFE=90\du  $,$ N $为$ BD $与$ CE $交点。有$ BECM $四点共圆,又$ DE\px BC $,所以\[ \angle ECD=\angle MBE\\\angle CED=\angle ECB=\angle BME \]得\[ \triangle EDC\sim \triangle MEB\riff \dfrac{\sqrt{2}BF}{CD}=\dfrac{BE}{CD}=\dfrac{BM}{CE}=\dfrac{\sqrt{2}BD}{CE}=2\sqrt{2}\riff BF=2CD \]由\[ \triangle BFN\sim \triangle CDN\riff BN=2CN,FN=2DN \\\triangle EDN\sim \angle CBN\riff EN=\dfrac{1}{2}DN=\dfrac{1}{4}FN=\dfrac{1}{3}FE\]直角$ \triangle BFN $中\[ BN=5EN\riff CD=\dfrac{3}{2}EN,BD=7EN\\\riff BC=\dfrac{\sqrt{205}}{2}EN\riff DE=\dfrac{\sqrt{205}}{5}EN\\\riff\dfrac{AD}{CD}=\dfrac{DE}{BC-DE}=\dfrac{2}{3}\riff AD=EN\\\riff CE=\dfrac{7}{2}EN=AD+AC\]

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit