Forgot password?
 Register account
View 3251|Reply 14

[不等式] 求证一道三元轮换不等式

[Copy link]

1

Threads

5

Posts

33

Credits

Credits
33

Show all posts

B88 Posted 2014-10-30 15:52 |Read mode
QQ图片20141030155049.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-10-30 15:56
图片旋转一下好看点
QQ截图20141030155839.jpg
只要证明
\[\frac{a^2}{\sqrt{a^2+\frac14ab+b^2}}\geqslant a-\frac b3\]
即可,这易证

1

Threads

5

Posts

33

Credits

Credits
33

Show all posts

 Author| B88 Posted 2014-10-30 16:03
回复 2# kuing


    可否再详细一点

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2014-10-30 16:43
齐次化,再求导?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-10-30 17:04
\[\frac{a^2}{\sqrt{a^2+\frac14ab+b^2}}\geqslant a-\frac b3\]
若 $b\geqslant 3a$ 则显然成立,当 $b<3a$ 时等价于
\[\frac{a^4}{a^2+\frac14ab+b^2}\geqslant\left( a-\frac b3 \right)^2,\]

\[a^4-\left( a-\frac b3 \right)^2\left( a^2+\frac14ab+b^2 \right)=\frac1{36} b(15a-4b)(a-b)^2\geqslant0,\]
即得证。

1

Threads

5

Posts

33

Credits

Credits
33

Show all posts

 Author| B88 Posted 2014-10-30 17:11
回复 5# kuing

牛轰轰

1

Threads

5

Posts

33

Credits

Credits
33

Show all posts

 Author| B88 Posted 2014-10-30 17:12
回复 4# 第一章


    多谢阿组

3

Threads

42

Posts

249

Credits

Credits
249

Show all posts

羊羊羊羊 Posted 2014-10-30 19:03
又一菊部经典。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-10-30 19:10
回复 8# 羊羊羊羊

这由切平面而来,可以参考《数学憋间》2011年第3期的《例谈不等式证明中的“切线法”及其拓展》

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-10-30 20:20
话说,1#图片下方那道函数题是错的

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-10-30 20:36
妈蛋。蛋疼的菊部

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-10-30 20:38
回复 11# Tesla35

都说了是切平面呐,疼你妹的菊

3

Threads

42

Posts

249

Credits

Credits
249

Show all posts

羊羊羊羊 Posted 2014-10-30 21:53
话说,1#图片下方那道函数题是错的
kuing 发表于 2014-10-30 20:20

这都被你补刀了啊。。。

1

Threads

5

Posts

33

Credits

Credits
33

Show all posts

 Author| B88 Posted 2014-10-31 11:05
回复 9# kuing


    看到了,容许我的膜拜

0

Threads

20

Posts

110

Credits

Credits
110

Show all posts

睡仙 Posted 2014-11-30 17:53
我们还有漂亮的局部不等式

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit