Forgot password?
 Create new account
View 2078|Reply 5

来自人教群的极限

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-11-2 22:55:40 |Read mode
鲁H学生宸瑜(4538*****)  21:26:44
QQ图片20141102225039.jpg

等价量 + 洛,希望没错
\begin{align*}
\lim_{x\to 0}\left( \frac{\ln (1+x)}x \right)^{1/(e^x-1)}&=\exp \left( \lim_{x\to 0}\frac1{e^x-1}\ln \frac{\ln (1+x)}x \right) \\
& =\exp \left( \lim_{x\to 0}\frac1x\left( \frac{\ln (1+x)}x-1 \right) \right) \\
& =\exp \left( \lim_{x\to 0}\frac{\ln (1+x)-x}{x^2} \right) \\
& =\exp \left( \lim_{x\to 0}\frac{\frac1{1+x}-1}{2x} \right) \\
& =\exp \left( \lim_{x\to 0}-\frac1{2(1+x)} \right) \\
& =\frac1{\sqrt e}.
\end{align*}

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-11-6 09:15:12
回复 1# kuing


泰勒展开会更屌一点...

\[\lim_{x\to 0}(\frac{\ln(1+x)}{x})^{\frac{1}{e^x-1}}=\lim_{x\to 0}(1-\frac{x}{2}+o(x))^{\frac{1}{x}}=e^{-\frac{1}{2}}\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-11-6 15:01:38
回复 2# 战巡

那个 o(x) 一定可以直接忽略?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-11-6 15:30:19
回复 3# kuing


这个是个定理,可以证明的啊
\[\lim_{x\to 0}(1+kx+o(x))^{\frac{1}{x}}=\exp(\lim_{x\to 0}\frac{1}{x}\ln(1+kx+o(x)))\]
\[=\exp(\lim_{x\to 0}\frac{1}{x}(kx+o(x))=e^k\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-11-6 15:32:11
回复 4# 战巡

soga

3

Threads

42

Posts

249

Credits

Credits
249

Show all posts

羊羊羊羊 Posted at 2014-11-8 00:16:10
回复  战巡

soga
kuing 发表于 2014-11-6 15:32

MB,高数都忘差不多了,难道又要重新开同济第四版去,我叉。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list