Forgot password?
 Register account
View 2269|Reply 7

[几何] 求证垂心到内外角平分线的垂足和对边中点共线

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2014-11-15 10:58 |Read mode
已知$H$是$\triangle ABC$的垂心,$H$向$\angle BAC$内外角平分线作垂线,垂足分别是$D$,$E$,$M$是$BC$边的中点,求证$D,E,M$三点共线
1.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-11-15 14:19
一种解法,需用几何结论:三角形的顶点到垂心的距离,等于外心到对边的距离的两倍。

记$\triangle ABC$的外心为$O$(在BC边上的射影为$M$),记矩形$ADHE$的中心为$H'$,则平行四边形$OMH'A$。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-11-15 14:38
网上搜索到的 大大大的太阳6  在百度知道的解答

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-11-15 15:07
连接$ CH、BH$并延长分别交$ AB、AC $于$P、Q$,证明$ \triangle PMD\cong \triangle QMD,\triangle EPD\cong \triangle  EQD$有$ \angle EDQ+\angle QDM=180\du  $

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2014-11-15 15:42
谢谢,两种都看懂了,感觉第一种利用那个结论要简洁一点

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-11-15 15:50
回复 4# 乌贼


    ED直线竟然是现两垂足形成线段PQ的中垂线,有意思

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-11-15 16:07
连接$ CH、BH$并延长分别交$ AB、AC $于$P、Q$,证明$ \triangle PMD\cong \triangle QMD,\triangle EPD\co ...
乌贼 发表于 2014-11-15 15:07
怕怕,越看越复杂,估计是九点圆中的分部内容。

如,此线是九点圆与圆APQ的根轴。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-11-15 16:29
回复 7# isee
不懂

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit