Forgot password?
 Register account
View 2568|Reply 10

[数论] 一道关于有理数的多元方程

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2014-11-16 20:13 |Read mode
是否存在互不相等的有理数$x,y,x$,满足 \[ \dfrac{1}{(x-y)^2}+\dfrac{1}{(y-z)^2}+  \dfrac{1}{(z-x)^2}=2014   \]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-11-16 21:55
$9^2+13^2+42^2=2014$
可以令$x-y=1/9.....$,解出x,y,z.

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted 2014-11-17 08:40
这组没有解!!但是还是不能说不存在。

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-11-17 12:28
Last edited by tommywong 2014-11-17 13:43$1\le a_1\le a_2\le a_3 \le 44,a_1^2+a_2^2+a_3^2=2014$:
3 18 41
3 22 39
5 15 42
5 30 33
9 13 42
13 18 39
14 27 33
18 27 31
21 22 33
都不是

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-11-17 17:00
回复 3# longzaifei


    我错了,还以为有解呢,再想想

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-11-17 17:31
注意到
\[\sum\frac1{(x-y)^2}=\left( \sum\frac1{x-y} \right)^2-2\sum\frac1{(x-y)(y-z)}=\left( \sum\frac1{x-y} \right)^2,\]
故原方程等价于
\[\frac1{x-y}+\frac1{y-z}+\frac1{z-x}=\pm\sqrt{2014},\]
左边有理右边无理,显然不可能成立。

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 评分试试看

View Rating Log

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-11-17 23:15
回复 6# kuing
这个恒等式这么妙呀!
好像一个什么条件不等式的证明,
就是通过一个恒等式(配方)就立刻证明出来了!

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2014-11-17 23:59
我记得渣k之前在某个地方提到过这个等式。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-11-18 00:06
随便吧,反正这道题就不是考数论,纯粹就是那个恒等式……

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted 2014-11-18 17:15
谢谢

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-11-23 15:11
回复  kuing
这个恒等式这么妙呀!
好像一个什么条件不等式的证明,
就是通过一个恒等式(配方)就立刻证 ...
其妙 发表于 2014-11-17 23:15
好像配方后,变成$(?+?+?-1)^2+1\geqslant1$立刻可得证明。

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit