Forgot password
 Register account
View 2052|Reply 4

[组合] 请解一个不定方程

[Copy link]

12

Threads

10

Posts

0

Reputation

Show all posts

957683999 posted 2014-11-19 16:59 |Read mode
Last edited by hbghlyj 2025-4-23 11:00解不定方程 $5 x+4 y+3 z+2 u+v=1010(x, y, z, u, v \inN_+)$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-11-19 17:34
回复 1# 957683999


不知道楼主出题的时候有没有想过这样的问题有没有意义

解这个不定方程?!你知道有多少组解么?全列出来保证让你写死!
要是说求这个方程有多少组解那还还有戏,要是求全部的解具体是什么,只能丢给电脑去做

求解的组数的话
\[5x+4y+3z+2u+v=x+(x+y)+(x+y+z)+(x+y+z+u)+(x+y+z+u+v)\]
换元后就变成
\[a+b+c+d+e=1010, 0<a<b<c<d<e\]
这个你就慢慢去解吧,先用隔板求出可以相等的情况,再容斥原理踢掉相等的情况,我是懒得算了,5个数太烦

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-11-19 18:45
Last edited by tommywong 2014-11-19 23:54$\displaystyle \frac{x^{15}}{(1-x^5)(1-x^4)(1-x^3)(1-x^2)(1-x)}$

$\displaystyle =\frac{x^{15}(1+x^5+...+x^{55})(1+x^4+...+x^{56})(1+x^3+...+x^{57})(1+x^2+...+x^{58})(1+x+...+x^{59})}{(1-x^{60})^5}$

$\displaystyle =(1+x^5+...+x^{55})(1+x^4+...+x^{56})(1+x^3+...+x^{57})(1+x^2+...+x^{58})(1+x+...+x^{59})\sum_{k=0}^{\infty} C_{k+4}^4 x^{60k+15}$

$x^{1010}$的系数是$30C_{16}^4+12320C_{17}^4+61885C_{18}^4+32650C_{19}^4+1115C_{20}^4$

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2014-11-19 19:48

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-11-23 15:08
回复 3# tommywong
母函数大神

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:28 GMT+8

Powered by Discuz!

Processed in 0.013241 seconds, 24 queries