Forgot password?
 Register account
View 1985|Reply 5

[数列] 数列和上界

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2014-11-30 10:44 |Read mode
如图
数列和的较优上界.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-11-30 11:49
回复 1# guanmo1


上界?这玩意哪有什么上界,明摆着不收敛的

如果你想要一个函数版本的上界,那多了去了,至少规定一个形式吧?
如果你想求近似值,那倒是比较简单

可以证明:
\[n-\frac{1}{2}\ln(n)<\sum_{k=1}^n\sqrt{\frac{k}{k+1}}<n-\frac{1}{2}\ln(\frac{n+1}{2})\]
而且前者近似效果相当不错

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-11-30 17:11
回复 2# 战巡

积分放缩咩?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-11-30 17:56
回复 3# kuing


右边是积分弄出来的,左边......
说实话,最早我是想设法求这个东西的级数展开的,不过原式难以求和,只能两头放缩用夹逼,就得到这个东西是$n-\frac{1}{2}\ln(n)+o(\frac{1}{n})$,而且下一项是负的...

但这个$o(\frac{1}{n})$的系数还没法求......因为这时两边的极限不等了尼玛...

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2014-11-30 21:16
证明的话,不用定积分,初等方法能否证明?无论是将左右两个式子看作Sn,求出an,比较通项大小,还是用数学归纳法,都避免不了一个函数不等式哎,好像不好搞,请指教。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-12-2 15:12
回复 5# guanmo1

初等方法,每次都要初等方法!
明明问的是个高等问题,你特么非要初等方法!

这就好比你手头有重炮有导弹,可你的上级却非要你用大刀长矛攻陷眼前钢筋混凝土的堡垒
简直就是胡闹!

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit