Forgot password?
 Register account
View 1654|Reply 0

[数列] 人教群的数列题

[Copy link]

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-12-2 14:44 |Read mode
已知数列$S_n·a_n=\frac{1}{4^n}$,求$a_n$

\[S_n(S_n-S_{n-1})=4^{-n}\]
\[S_{n-1}=S_n-\frac{4^{-n}}{S_n}\]
下面则是尝试配方
\begin{cases}
S_{n-1}+i·2^{-n+1}=\frac{(S_n+i·2^{-n})^2}{S_n} \\
S_{n-1}-i·2^{-n+1}=\frac{(S_n-i·2^{-n})^2}{S_n}
\end{cases}

两式相除并取对数可得
\[\ln(\frac{S_{n-1}+i·2^{-n+1}}{S_{n-1}-i·2^{-n+1}})=2\ln(\frac{S_n+i·2^{-n}}{S_n-i·2^{-n}})\]
易证$S_1=a_1=\frac{1}{2}$,有:
\[\ln(\frac{S_n+i·2^{-n}}{S_n-i·2^{-n}})=\ln(\frac{1+i}{1-i})·2^{-n+1}=i\pi·2^{-n}\]
\[S_n=i·2^{-n}(\frac{e^{i\pi·2^{-n}}+1}{e^{i\pi·2^{-n}}-1})=i·2^{-n}\coth(i\pi·2^{-n-1})=2^{-n}\cot(\pi·2^{-n-1})\]
\[a_n=S_n-S_{n-1}=...\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:03 GMT+8

Powered by Discuz!

Processed in 0.013937 second(s), 21 queries

× Quick Reply To Top Edit