Forgot password
 Register account
View 2629|Reply 4

[几何] $BD=CE$,$\angle BAD=\angle CAE$,求证$AB=AC$

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2014-12-6 19:11 |Read mode
$\triangle ABC$中$D,E$是线段$BC$上两点,$BD=CE$,$\angle BAD=\angle CAE$,求证$AB=AC$
2.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-12-6 19:28
假设 $AB>AC$,则由条件得
\begin{align*}
AB>AC&\iff \angle B<\angle C\\
&\iff \angle ADE<\angle AED\\
&\iff AD>AE\\
&\iff \sin\angle ADE<\sin\angle AED\\
&\iff \sin\angle ADB<\sin\angle AEC\\
&\iff \frac{\sin\angle ADB}{\sin\angle BAD}<\frac{\sin\angle AEC}{\sin\angle CAE}\\
&\iff \frac{AB}{BD}<\frac{AC}{CE}\\
&\iff AB<AC,
\end{align*}
矛盾。

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2014-12-6 19:46
回复 2# kuing
谢谢,原来是通过角的大小转到$AD>AE$把钝角的情况避开了

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-12-7 08:08
人教论坛初中版块很早就有此题,大约叫,看似简单的题。

不想让帖子了,除楼上的反证以及三角,还可作出三角形的外接圆,等角所对的弦也相等,进而全等……

另,可平移小三角形,使题中告之的等线段生命,利用共圆解决。

0

Threads

2

Posts

0

Reputation

Show all posts

潇湘君 posted 2014-12-13 22:29
kk威武!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:01 GMT+8

Powered by Discuz!

Processed in 0.012917 seconds, 25 queries