Forgot password?
 Register account
View 2620|Reply 4

[几何] $BD=CE$,$\angle BAD=\angle CAE$,求证$AB=AC$

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2014-12-6 19:11 |Read mode
$\triangle ABC$中$D,E$是线段$BC$上两点,$BD=CE$,$\angle BAD=\angle CAE$,求证$AB=AC$
2.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-6 19:28
假设 $AB>AC$,则由条件得
\begin{align*}
AB>AC&\iff \angle B<\angle C\\
&\iff \angle ADE<\angle AED\\
&\iff AD>AE\\
&\iff \sin\angle ADE<\sin\angle AED\\
&\iff \sin\angle ADB<\sin\angle AEC\\
&\iff \frac{\sin\angle ADB}{\sin\angle BAD}<\frac{\sin\angle AEC}{\sin\angle CAE}\\
&\iff \frac{AB}{BD}<\frac{AC}{CE}\\
&\iff AB<AC,
\end{align*}
矛盾。

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2014-12-6 19:46
回复 2# kuing
谢谢,原来是通过角的大小转到$AD>AE$把钝角的情况避开了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-12-7 08:08
人教论坛初中版块很早就有此题,大约叫,看似简单的题。

不想让帖子了,除楼上的反证以及三角,还可作出三角形的外接圆,等角所对的弦也相等,进而全等……

另,可平移小三角形,使题中告之的等线段生命,利用共圆解决。

0

Threads

2

Posts

10

Credits

Credits
10

Show all posts

潇湘君 Posted 2014-12-13 22:29
kk威武!

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit