Forgot password?
 Register account
View 2042|Reply 5

[数列] 证明数列为等差

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted 2014-12-10 21:40 |Read mode
证明等差.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-12-11 06:25
回复 1# 等待hxh

令$n=1$
\[\abs{a_{m+1}-a_m-a_1}<\frac{1}{m+1}\]
令$a_{m+1}-a_m=d_m$
\[\abs{d_m-a_1}<\frac{1}{m+1}\]
\[0<\lim_{m\to \infty}\abs{d_m-a_1}<\lim_{m\to \infty}\frac{1}{m+1}=0\]
\[\lim_{m\to \infty}d_m=a_1\]
于是
\[\abs{a_{m+n}-a_m-a_n}=\abs{d_m+d_{m+1}+...+d_{m+n-1}-a_n}\]
\[0<\lim_{m\to \infty}\abs{a_{m+n}-a_m-a_n}=\abs{na_1-a_n}<\lim_{m\to \infty}\frac{1}{m+n}=0\]
\[a_n=na_1\]

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-12-12 10:55
回复 2# 战巡

能取极限?

21

Threads

67

Posts

510

Credits

Credits
510

Show all posts

wzxsjz Posted 2014-12-12 11:07
哦,可以,夹击

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2014-12-12 12:36
夹逼

0

Threads

1

Posts

5

Credits

Credits
5

Show all posts

巭孬嫑夯昆 Posted 2014-12-12 13:05

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit