Forgot password?
 Register account
View 2216|Reply 3

[不等式] 来自人教群的 $\abs x+\abs y=\sqrt{(x-1)^2+(y-1)^2}$

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-12-15 15:44 |Read mode
渝爱好者-学习(3308*****)  15:13:54
QQ图片20141215154338.jpg
题目:已知实数 $x$, $y$ 满足 $\abs x+\abs y=\sqrt{(x-1)^2+(y-1)^2}$,求 $x^2+y^2$ 的最小值。

解:将条件等式两边平方得
\[x^2+y^2+2\abs{xy}=(x-1)^2+(y-1)^2,\]
化简得
\[\abs{xy}=1-x-y\geqslant 1-\abs x-\abs y,\]

\[2\leqslant (\abs x+1)(\abs y+1)\leqslant \frac{(\abs x+\abs y+2)^2}4,\]
得到
\[\abs x+\abs y\geqslant 2\sqrt2-2,\]
所以
\[x^2+y^2\geqslant \frac{(\abs x+\abs y)^2}2\geqslant \frac{\bigl(2\sqrt2-2\bigr)^2}2=6-4\sqrt2,\]
当 $x=y=\sqrt2-1$ 时取等。

2

Threads

29

Posts

167

Credits

Credits
167

Show all posts

羊1234 Posted 2014-12-15 15:53
$\abs{xy}=1-x-y\geqslant 1-\abs x-\abs y$
这个难想到

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2014-12-15 22:44
回复 2# 小芳

不想分类讨论,想全部都变成绝对值来搞,于是自然就放缩了

4

Threads

14

Posts

111

Credits

Credits
111

Show all posts

yhg1970 Posted 2014-12-16 01:22
也可用数形结合解决。

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit